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Abstract

Nonlinear embedding algorithms such as stochastic neighbor embedding do dimensional-
ity reduction by optimizing an objective function involving similarities between pairs of input Free embedding
patterns. The result is a low-dimensional projection of each input pattern. A common way s ) e Mapping F: neural net with architecture 3—
to defllne an out-.of-sample mapping Is to optimize the objective dlre_ctly over a parametric ‘. _) X “J 100-500—2 with sigmoidal activations.
mapping of the inputs, such as a neural net. This can be done using the chain rule and P ’ e Z step: approximated w/ Barnes-Hut method
a nonlinear optimizer, but is very slow, because the objective involves a quadratic number i 5. P for t-SNE and fast multipole method for EE.
of terms each dependent on the entire mapping’s parameters. Using the method of aux- i hoot f o PE with chain rule is O(N?); PE with MAC
ililary coordinates, we derive a training algorithm that works by alternating steps that train i . is O(N) for EE and O(N log N) for t-SNE. R T D T v T
an auxiliary embedding with steps that train the mapping. This has two advantages: 1) Y .{_ : £ number of training points N number of training points N
The algorithm is universal in that a specific learning algorithm for any choice of embedding " "~ - 2. MNIST dataset.

and mapping can be constructed by simply reusing existing algorithms for the embedding e We train two models on N = 60000 MNIST handwritten 28 x 28 digits dataset, using entropic affinities:

and for the mapping. A user can then try possible mappings and embeddings with less ¢ COIL-20 dataset: 128 x 128 images of the rotation of 3 objects every 5°. 1) a t--SNE embedding with a neural net 28 x 28-500-500-2000-2; 2) an EE linear embedding.

effort. 2) The algorithm is fast, and it can reuse N-body methods developed for nonlinear e We used EE to produce the free embedding E(X) (i.e., u = 0). e We reuse most of the code needed for the experiment:

embeddings, yielding linear-time iterations. Funded by NSF award 115—1423515. e Direct fit applies a linear mapping directly to a free embedding. —7Z step: spectral direction minimization, N-body approximation.

e Parametric embedding (PE) optimizes P(F') directly. —F step: deep net pretraining, minibatch optimization with constant step size and momentum.
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Our goal is to obtain a parametric mapping for nonlinear embedding objective functions E(X), such as Applying the method of auxiliary coordinates (MAC) —

. The original goal of these methods  Convert the nested problem for P(F') into an equivalent constrained problem: B L N — MAC
IS to obtain low-dimensional coordlnates XN for a given set of high-dimensional points Y p. . We call the SR 7\ — B(7 t F . N ol SERATEL . EaEE L gl . Wk - 20!
— — p— KRN A R A R B K E . s'f..’;..:‘;: F A, ,{":.-'&i"p-? o Tal
free embedding X* the final result of these algorithms. For example, in EE: min P(F, Z) (Z) st z, (Yn)y n=1,..., FUE g R a~ LR Une —— PE (minibatch)
N N that is not nested, where z,, are the auxiliary coordinates (low-dim projection) for an PR T TEER g o L RS — PE (batch)
— Z Wom %0 — Xon||” + A Z exp (— [|%p — xXm||?) A > 0. input pattern y,,. Solve it using the quadratic penalty method: 0 L L e 1 o A —19.9r

| Po(F,Z:; 1 B F( — B(Z)+ 2z - FY)| SERET U MR e e SR o oohelt o 19

e Often produce embedding results. min P Z |z — Fya)||” = £(Z) + 9 |1Z =F(Y)[", p— o0 R R b e TTMER
. . . C . . . . . —50+ ORI L R 1 —5o} , Rl -
e Require elaborate iterative non-convex optimization, which can be mitigated with (1) the spectral direction, - ST ST
which uses part of the Hessian efficiently, and (2) an N-body approximation for the gradient so each each ~ The minimization alternates between two well-studied problems: | 18.5]
iteration runs in linear time. e Over F given Z: ming >, ||z, — F(y,)||". This is a standard least-squares regres-
¢ Do not give an out-of-sample mapping for projection of new data. sion for a dataset (Y, Z) using F, and can be solved using existing, well-developed

A parametric embedding F*(Y) is given from a parametric problem P(F) = E(F(Y)) for the embedding code for many classes of mappings. 100 50 0 50 100 flOO |‘50 . 0 . 50 . 100
function £ using a family 7 of mappings F : R” — R’. For EE: eOver Z given F: ming F(Z) +%|Z — F(Y)|". This is a regularized embedding ' ' ' ' ' ' '
which can be minimized using existing techniques for E(Z) (such as the spectral

direction) with simple modifications.
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The parametric embedding ties the mapping to the embedding during RLxN
the optimization: Z - Fy(Y)
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e Easy to develop an algorithm for an arbitrary choice of embedding objective function TRt A it ek Ao I RNV Kl L S A _ 11!  PE
E and of mapping F': simply reuse existing algorithms for them. BRI SRR o N TR R B i tin eI
. . . . e Deals with the optimization of £ and of F separately. The optimization details R B B | ) et o S 1 —~10
: : : L R E R PR ' ST R RS IR R SR s v £
';he gr?jdlent tﬁf f wrt be ”,:ﬁs;) be dd]?rlved using the chain rule and (step sizes, etc.) of the nested problem decouple and remain confined within the T e T o <
epends on the form of both P and F. Fi(Y) -2 corresponding steps g - R
*computing the gradient is O(V). | (Y * Allows for non-differentiable mappings (e.g. decision trees). REES T N e o ¢ T
Direct Tit: fllt K dlrec’:ly.toﬂ(]Yi X*) with fletﬁst-sqgagedg reggessmn. The o (Y) e Same complexity as using the chain rule. However, the quadratic step over Z, B T R | .l ";
mapping piays 1o TOIe In e earning of the Smbedting 2. < F(Y) which is the bottleneck, can be easily linearized with existing N-body methods (fast e R
Thm. 2.1. Let X* be a global minim. of . ThenVF € F. P(F) > E(X"). multipole methods). D e S I S e N
Thm. 2.2.[Perfect direct fit] Let F* € F. If F*(Y) = X* and X* is a global » £ 2
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