

A FAST, UNIVERSAL ALGORITHM TO LEARN PARAMETRIC NONLINEAR EMBEDDINGS Miguel A. Carreira-Perpi ´ $\tilde{\mathbf{n}}$ **án**¹ and Max Vladymyrov² ¹EECS, University of California, Merced ²Yahoo Labs

Neural Information Processing Systems

NIPS

1 **Abstract**

Nonlinear embedding algorithms such as stochastic neighbor embedding do dimensionality reduction by optimizing an objective function involving similarities between pairs of input patterns. The result is a low-dimensional projection of each input pattern. A common way to define an out-of-sample mapping is to optimize the objective directly over a parametric mapping of the inputs, such as a neural net. This can be done using the chain rule and a nonlinear optimizer, but is very slow, because the objective involves a quadratic number of terms each dependent on the entire mapping's parameters. Using the method of auxiliary coordinates, we derive a training algorithm that works by alternating steps that train an auxiliary embedding with steps that train the mapping. This has two advantages: 1) The algorithm is universal in that a specific learning algorithm for any choice of embedding and mapping can be constructed by simply reusing existing algorithms for the embedding and for the mapping. A user can then try possible mappings and embeddings with less effort. 2) The algorithm is fast, and it can reuse N -body methods developed for nonlinear embeddings, yielding linear-time iterations. *Funded by NSF award IIS–1423515.*

> 2 \setminus $\lambda > 0$.

2 **Free embeddings, parametric embeddings and chain-rule gradients**

Our goal is to obtain *a parametric mapping* for nonlinear embedding objective functions $E(X)$, such as Stochastic Neighbor Embedding (SNE), t-SNE, Elastic Embedding (EE). The original goal of these methods is to obtain low-dimensional coordinates $X_{L\times N}$ for a given set of high-dimensional points $\mathbf{Y}_{D\times N}$. We call the free embedding X^{*} the final result of these algorithms. For example, in EE:

$$
E(\mathbf{X}) = \sum_{n,m=1}^{N} w_{nm} ||\mathbf{x}_n - \mathbf{x}_m||^2 + \lambda \sum_{n,m=1}^{N} \exp(-||\mathbf{x}_n - \mathbf{x}_m||^2)
$$

$$
) \quad \lambda > 0.
$$

- •Often produce high-quality embedding results.
- •Require elaborate iterative non-convex optimization, which can be mitigated with (1) the spectral direction, which uses part of the Hessian efficiently, and (2) an N -body approximation for the gradient so each each iteration runs in linear time.
- •Do not give an out-of-sample mapping for projection of new data.

A parametric embedding $\mathbf{F}^*(\mathbf{Y})$ is given from a parametric problem $P(\mathbf{F}) = E(\mathbf{F}(\mathbf{Y}))$ for the embedding function E using a family $\mathcal F$ of mappings $\mathbf F:\mathbb R^D\to\mathbb R^L.$ For EE:

- \bullet Over $\mathbf F$ given $\mathbf Z \colon \min_{\mathbf F} \sum_{n=1}^N$ $\frac{N}{n-1}\|\mathbf{z}_n - \mathbf{F}(\mathbf{y}_n)\|_2$ 2 sion for a dataset (Y, \overline{Z}) using F, and can be solved using existing, well-developed code for many classes of mappings.
- Over Z given F: $\min_{\mathbf{Z}} E(\mathbf{Z}) + \frac{\mu}{2}$ 2 $\|\mathbf{Z} - \mathbf{F}(\mathbf{Y})\|$ 2 which can be minimized using existing techniques for $E(\mathbf{Z})$ (such as the spectral direction) with simple modifications.

- •Easy to develop an algorithm for an arbitrary choice of embedding objective function E and of mapping F : simply reuse existing algorithms for them.
- Deals with the optimization of E and of F separately. The optimization details (step sizes, etc.) of the nested problem decouple and remain confined within the corresponding steps.
- •Allows for non-differentiable mappings (e.g. decision trees).
- •Same complexity as using the chain rule. However, the quadratic step over Z, which is the bottleneck, can be easily linearized with existing N -body methods (fast multipole methods).
- Convergence to a minimum guaranteed as $\mu \to \infty$.

 $m=1,\ldots, N$

$$
P(\mathbf{F}) = \sum_{n,m=1}^{N} w_{nm} ||\mathbf{F}(\mathbf{y}_n) - \mathbf{F}(\mathbf{y}_m)||^2 + \lambda \sum_{n,m=1}^{N} \exp(-||\mathbf{F}(\mathbf{y}_n) - \mathbf{F}(\mathbf{y}_m)||^2)
$$

The parametric embedding ties the mapping to the embedding during the optimization:

- the gradient of P wrt F must be derived using the chain rule and depends on the form of both P and $\mathbf F$,
- \bullet computing the gradient is $\mathcal{O}(N^2)$.

Direct fit: fit F directly to (Y, X^*) with least-squares regression. The mapping plays no role in the learning of the embedding X .

Thm. 2.1. *Let* X^* *be a global minim. of* E *. Then* \forall **F** \in \mathcal{F} : P (**F**) $\geq E(X^*)$ *.* **Thm. 2.2.**[Perfect direct fit] $Let F^* \in \mathcal{F}$. If $F^*(Y) = X^*$ and X^* is a global *minimizer of* E then \mathbf{F}^* is a global minimizer of P.

- 1) a t-SNE embedding with a neural net $28 \times 28 500 500 2000 2$; 2) an EE linear embedding.
- •We reuse most of the code needed for the experiment: **–**Z step: spectral direction minimization, N-body approximation.
-

- COIL-20 dataset: 128×128 images of the rotation of 3 objects every 5° .
- We used EE to produce the free embedding $E(\mathbf{X})$ (i.e., $\mu = 0$).
- •Direct fit applies a linear mapping directly to a free embedding.
- Parametric embedding (PE) optimizes $P(\mathbf{F})$ directly.

Applying the method of auxiliary coordinates (MAC)

Convert the nested problem for $P(\mathbf{F})$ into an equivalent constrained problem:

$$
\min \bar{P}(\mathbf{F}, \mathbf{Z}) = E(\mathbf{Z}) \quad \text{s.t.} \quad \mathbf{z}_n = \mathbf{F}(\mathbf{y}_n)
$$

that is not nested, where z_n are the auxiliary coordinates (low-dim projection) for an input pattern y_n . Solve it using the quadratic penalty method:

$$
\min P_Q(\mathbf{F}, \mathbf{Z}; \mu) = E(\mathbf{Z}) + \frac{\mu}{2} \sum_{n=1}^N ||\mathbf{z}_n - \mathbf{F}(\mathbf{y}_n)||^2 = E(\mathbf{Z}) + \frac{\mu}{2} ||\mathbf{Z} - \mathbf{F}(\mathbf{Y})||^2, \quad \mu \to \infty.
$$

The minimization alternates between two well-studied problems:

. This is a standard least-squares regres-

. This is a regularized embedding

Benefits:

3 **Experiments**

1. Cost of the iterations.

- MAC, and its Z and F steps.
- Mapping F: neural net with architecture 3-100–500–2 with sigmoidal activations.
- •Z step: approximated w/ Barnes-Hut method for t -SNE and fast multipole method for EE.
- PE with chain rule is $\mathcal{O}(N^2)$; PE with MAC is $\mathcal{O}(N)$ for EE and $\mathcal{O}(N \log N)$ for t-SNE.

Runtime (seconds)

• We train two models on $N = 60000$ MNIST handwritten 28×28 digits dataset, using entropic affinities:

2. MNIST dataset.

–F step: deep net pretraining, minibatch optimization with constant step size and momentum.

