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1 Abstract

Nonlinear embedding algorithms such as stochastic neighbor embedding do dimensional-
ity reduction by optimizing an objective function involving similarities between pairs of input
patterns. The result is a low-dimensional projection of each input pattern. A common way
to define an out-of-sample mapping is to optimize the objective directly over a parametric
mapping of the inputs, such as a neural net. This can be done using the chain rule and
a nonlinear optimizer, but is very slow, because the objective involves a quadratic number
of terms each dependent on the entire mapping’s parameters. Using the method of aux-
iliary coordinates, we derive a training algorithm that works by alternating steps that train
an auxiliary embedding with steps that train the mapping. This has two advantages: 1)
The algorithm is universal in that a specific learning algorithm for any choice of embedding
and mapping can be constructed by simply reusing existing algorithms for the embedding
and for the mapping. A user can then try possible mappings and embeddings with less
effort. 2) The algorithm is fast, and it can reuse N -body methods developed for nonlinear
embeddings, yielding linear-time iterations. Funded by NSF award IIS–1423515.

2 Free embeddings, parametric embeddings and chain-rule gradients

Our goal is to obtain a parametric mapping for nonlinear embedding objective functions E(X), such as
Stochastic Neighbor Embedding (SNE), t-SNE, Elastic Embedding (EE). The original goal of these methods
is to obtain low-dimensional coordinates XL×N for a given set of high-dimensional points YD×N . We call the
free embedding X∗ the final result of these algorithms. For example, in EE:

E(X) =
N
∑

n,m=1

wnm ‖xn − xm‖
2 + λ

N
∑

n,m=1

exp (−‖xn − xm‖
2) λ > 0.

•Often produce high-quality embedding results.

•Require elaborate iterative non-convex optimization, which can be mitigated with (1) the spectral direction,
which uses part of the Hessian efficiently, and (2) an N -body approximation for the gradient so each each
iteration runs in linear time.

•Do not give an out-of-sample mapping for projection of new data.

A parametric embedding F∗(Y) is given from a parametric problem P (F) = E(F(Y)) for the embedding
function E using a family F of mappings F : RD → R

L. For EE:

P (F) =
N
∑

n,m=1

wnm ‖F(yn)− F(ym)‖
2 + λ

N
∑

n,m=1

exp
(

−‖F(yn)− F(ym)‖
2
)

λ > 0.

The parametric embedding ties the mapping to the embedding during
the optimization:

• the gradient of P wrt F must be derived using the chain rule and
depends on the form of both P and F,

•computing the gradient is O(N 2).

Direct fit: fit F directly to (Y,X∗) with least-squares regression. The
mapping plays no role in the learning of the embedding X.

Thm. 2.1. Let X∗ be a global minim. of E. Then ∀F ∈ F : P (F) ≥ E(X∗).
Thm. 2.2.[Perfect direct fit] Let F∗ ∈ F . If F∗(Y) = X∗ and X∗ is a global
minimizer of E then F∗ is a global minimizer of P .
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•COIL-20 dataset: 128× 128 images of the rotation of 3 objects every 5◦.

•We used EE to produce the free embedding E(X) (i.e., µ = 0).

•Direct fit applies a linear mapping directly to a free embedding.

•Parametric embedding (PE) optimizes P (F) directly.

3 Applying the method of auxiliary coordinates (MAC)

Convert the nested problem for P (F) into an equivalent constrained problem:

min P̄ (F,Z) = E(Z) s.t. zn = F(yn), n = 1, . . . , N

that is not nested, where zn are the auxiliary coordinates (low-dim projection) for an
input pattern yn. Solve it using the quadratic penalty method:

minPQ(F,Z;µ) = E(Z) +
µ

2

N
∑

n=1

‖zn − F(yn)‖
2 = E(Z) +

µ

2
‖Z− F(Y)‖2, µ → ∞.

The minimization alternates between two well-studied problems:

•Over F given Z: minF
∑N

n=1 ‖zn − F(yn)‖
2
. This is a standard least-squares regres-

sion for a dataset (Y,Z) using F, and can be solved using existing, well-developed
code for many classes of mappings.

•Over Z given F: minZE(Z) + µ
2 ‖Z− F(Y)‖2. This is a regularized embedding

which can be minimized using existing techniques for E(Z) (such as the spectral
direction) with simple modifications.

Benefits:

•Easy to develop an algorithm for an arbitrary choice of embedding objective function
E and of mapping F: simply reuse existing algorithms for them.

•Deals with the optimization of E and of F separately. The optimization details
(step sizes, etc.) of the nested problem decouple and remain confined within the
corresponding steps.

•Allows for non-differentiable mappings (e.g. decision trees).

•Same complexity as using the chain rule. However, the quadratic step over Z,
which is the bottleneck, can be easily linearized with existing N -body methods (fast
multipole methods).

•Convergence to a minimum guaranteed as µ → ∞.

3 Experiments

1. Cost of the iterations.
•MAC, and its Z and F steps.

•Mapping F: neural net with architecture 3–
100–500–2 with sigmoidal activations.

•Z step: approximated w/ Barnes-Hut method
for t-SNE and fast multipole method for EE.

•PE with chain rule is O(N 2); PE with MAC
is O(N) for EE and O(N logN) for t-SNE.
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2. MNIST dataset.
•We train two models on N = 60 000 MNIST handwritten 28× 28 digits dataset, using entropic affinities:

1) a t-SNE embedding with a neural net 28× 28–500–500–2000–2; 2) an EE linear embedding.

•We reuse most of the code needed for the experiment:

–Z step: spectral direction minimization, N -body approximation.

–F step: deep net pretraining, minibatch optimization with constant step size and momentum.
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