
Use standard self attention at each layer

� The input tokens can attend to memory and class token
� Class token attends to memory and input tokens
� Memory is “learned”, but it is passive (doesn’t attend to input 

tokens)

Extension: Computation reuse in multi tasks

� Problem: Adding input tokens doesn’t allow computation reuse
� Solution: Only new task token can attend to new memory, while 

input tokens only perform self-attention. 
� Improves on MLP-head finetuning.

Fine-tuning Image Transformers using Learnable Memory 
Mark Sandler, Andrey Zhmoginov, Max Vladymyrov, Andrew Jackson

Core idea
� Use learnable memory tokens passed alongside input tokens to 

every layer to fine-tune the transformer on new tasks, while 
keeping the rest of transformer fixed

Experimental Results

* 

Summary/Conclusion

� Learnable memory provides parameter efficient fine-tuning method that also allows 
computation reuse. More parameter efficient/Accurate  than competing methods 
(e.g. adapters, and other types of memory)

Modified Transformer Encoder With Memory
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