Fine-tuning Image Transformers using Learnable Memory Mark Sandler, Andrey Zhmoginov, Max Vladymyrov, Andrew Jackson

Core idea

Use learnable memory tokens passed alongside input tokens to every layer to fine-tune the transformer on new tasks, while keeping the rest of transformer fixed

Use standard self attention at each layer

- The input tokens can attend to memory and class token
- Class token attends to memory and input tokens
- Memory is "learned", but it is passive (doesn't attend to input tokens)

Extension: Computation reuse in multi tasks

- Problem: Adding input tokens doesn't allow computation reuse
- Solution: Only new task token can attend to new memory, while input tokens only perform self-attention.
- Improves on MLP-head finetuning.

Experimental Results

	Full	Head Only	Head + Class	1 cells	5 cells	10 cells	20 cells
Sun-297	76.9	75.9	76.4	77.0	76.8	76.9	76.9
iNaturalist	54.0	46.3	48.7	49.4	50.1	50.0	50.0
Cifar-100	91.8	85.8	88.6	90.9	91.0	91.1	90.9
Places-365	55.9	50.9	52.4	53.3	53.8	53.9	54.1

Table 2. Accuracy for different datasets using the optimal learning rate for each fine-tuning regime

	Full	Head only	Class	Mem (5)
Params	80M	768 imes k	768	$768 \times 12 \times 5$
Flops	$\approx 1G$	0	0	$\approx 25 \mathrm{M}$

Accuracy	Params (ViT-B/16)
50.1	$768 * 12 * m \approx 46K$
49.9	$3078 * 5 * 4 * m \approx 737K$
50.3	$46K + 737K \approx 783K$
	Accuracy 50.1 49.9 50.3

Table 5. Incremental cost on number of parameters and FLOPS for ViT-32-B for each fine-tuning regime. Class and head fine-tuning do not incur any extra computation cost as the architecture stays unchanged. Here k denotes number of classes, and we assume 5 memory tokens per layer.

Table 4. Performance for i-Naturalist for adapters [17] with bottleneck of size 5, vs learnable memory with 5 cells. (ours). Parameter counts exclude the size of the head which is the same for all meth-

Memory with computation reuse vs full attention

Summary/Conclusion

Learnable memory provides parameter efficient fine-tuning method that also allows computation reuse. More parameter efficient/Accurate than competing methods (e.g. adapters, and other types of memory)

Full attention. memory Attention mask memory Attention mask no memory Full attention no memory