
Use standard self attention at each layer

� The input tokens can attend to memory and class token
� Class token attends to memory and input tokens
� Memory is “learned”, but it is passive (doesn’t attend to input

tokens)

Extension: Computation reuse in multi tasks

� Problem: Adding input tokens doesn’t allow computation reuse
� Solution: Only new task token can attend to new memory, while

input tokens only perform self-attention.
� Improves on MLP-head finetuning.

Fine-tuning Image Transformers using Learnable Memory
Mark Sandler, Andrey Zhmoginov, Max Vladymyrov, Andrew Jackson

Core idea
� Use learnable memory tokens passed alongside input tokens to

every layer to fine-tune the transformer on new tasks, while
keeping the rest of transformer fixed

Experimental Results

*

Summary/Conclusion

� Learnable memory provides parameter efficient fine-tuning method that also allows
computation reuse. More parameter efficient/Accurate than competing methods
(e.g. adapters, and other types of memory)

Modified Transformer Encoder With Memory

Norm

Attention

Norm

MLP Head

K-class
 bird
 ball
 car…

1 2 3 4 5 6 87 9

Patches with added position encoding

0 *

Linear projection of patches

MLP MLP

Norm

Attention

Norm

Input Memory

MLP

Norm

Attention

Norm

Input Memory

MLP

Norm

Attention

Norm

Input Memory

“*” Class token.
“+” indicates residual connection
T(*) denotes the output corresponding to class
token

Input Memory

T(*)

0 *

Norm

Attention

Norm

MLP

Input Mem1 Mem2 Mem3

0 %

Head1

T(*)

0 #

✖L

Head2 Head3

T(%) T(#)

Concatenated model

Patches

Individual models

0 *

Head1T(*)

Inp Mem1

✖L

Patches

0 %

Head2T(%)

Inp

✖L

Patches

0 #

Head3T(#)

Inp

✖L

Patches

Mem2

Mem3

Memory with computation reuse vs full attention

