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Key Findings Re-parameterization of weight matrix
¢ Linear Transformers can efficiently Consider the following block re-parametrization
solve small positive definite of weight matrix P (same for matrix Q):
symmetric linear systems. ) . Full encoding
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Find vector z € RY that solves the system of ® Square matrices represented as scalar o] e 0.0 0.00
0.2

e Rectangular matrices represented as

With a; € RN and b; € R ]
scalar times a vector of ones, e.d.

Training data: positive definite symmetric Block encoding
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matrices A with a fixed condition number. § )

Motivation:

e Elements of A are sampled independently,
=> there is no bias for any dimension.
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Linear Transformer

Linear Transformer updates each layer using ® Efficiency: identity matrices speed up _
Ae; = Z;yzl(ejTQez')Pej- computation N ";’,
e Performance: comparable loss to training A
With weights P = WpWy and @ = WxWq . with full matrices.
Objective function to minimize: e Generalization: Decouples problem 2
L) = E [(fg({el, en}eni) — m)g] | dimer?sion (N? fro.m model parameters, % |
enabling application and fine-tuning to —

different input sizes.

Data Encoding
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_________________________ ® Block, N=9
Linear Transformer = o Block NE[2,9]

--------------------- - ® Block, N €[10, 20]
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Each equation is encoded as a token
e;, = (az-, b;, hi),where H = (ho, hq, hN) IS an

optional embedding matrix (either learned or Input size
redefined).
P ) e Full, N=9. Full encoding, trained on N=9 problems only + 27-dim learned
We append a query token en1 = (2o, l1+k) to embedding H. This model cannot generalize to matrices of other sizes, but it
the sequence, where o represents test data. achieves the best performance for problems of size N=9.

e Block, N=9. Block encoding, trained on N=9 problems only + three NxN fixed
identity matrices H. The generalization quality is limited.

e Block, N € [2,9]. Block encoding, trained on sizes N € [2,9] + three NxN
fixed identity matrices H. Generalizes well beyond its training sizes.

e Block, N €[10,20]. Block encoding, fine-tuned from model N € [2,9] above
on sizes N € [10,20]. Generalizes well beyond its training sizes.



