Google Research

Efficient Linear System Solver with Transformers

Max VladymyrovJohannes von Oswaldmxv@google.comjvoswald@google.com

Nolan Miller namiller@google.com Mark Sandler sandler@google.com

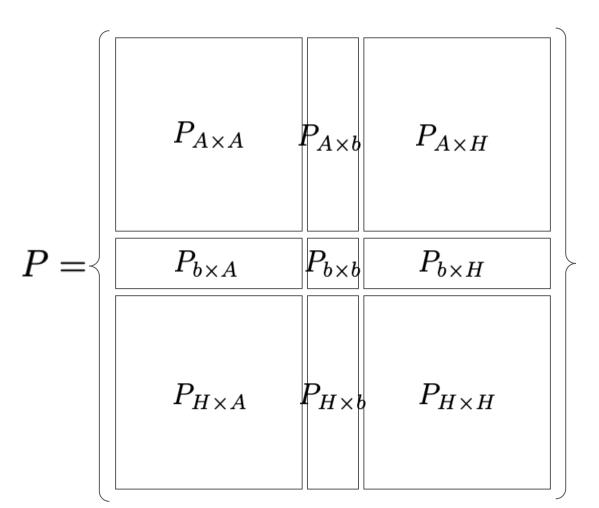
Key Findings

- Linear Transformers can efficiently solve small positive definite symmetric linear systems.
- Effective reparametrization allows for solving problems with different lineary system sizes.
- Competitive performance with classical methods for small systems.

Problem formulation

Re-parameterization of weight matrix

Consider the following block re-parametrization of weight matrix P (same for matrix Q):



Find vector $x \in \mathbb{R}^N$ that solves the system of *N* linear equations: $\langle a_i, x \rangle = b_i$

With $a_i \in \mathbb{R}^N$ and $b_i \in \mathbb{R}$

Training data: positive definite symmetric matrices *A* with a fixed condition number.

Linear Transformer

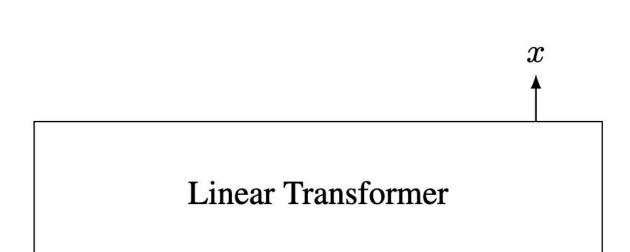
Linear Transformer updates each layer using $\Delta e_i = \sum_{j=1}^{N} (e_j^{\top} Q e_i) P e_j.$

With weights $P = W_P W_V$ and $Q = W_K^\top W_Q$.

Objective function to minimize:

 $L(\theta) = \mathbb{E}_{A,b} \left[(f_{\theta}(\{e_1, ..., e_N\}, e_{N+1}) - x)^2 \right].$

Data Encoding



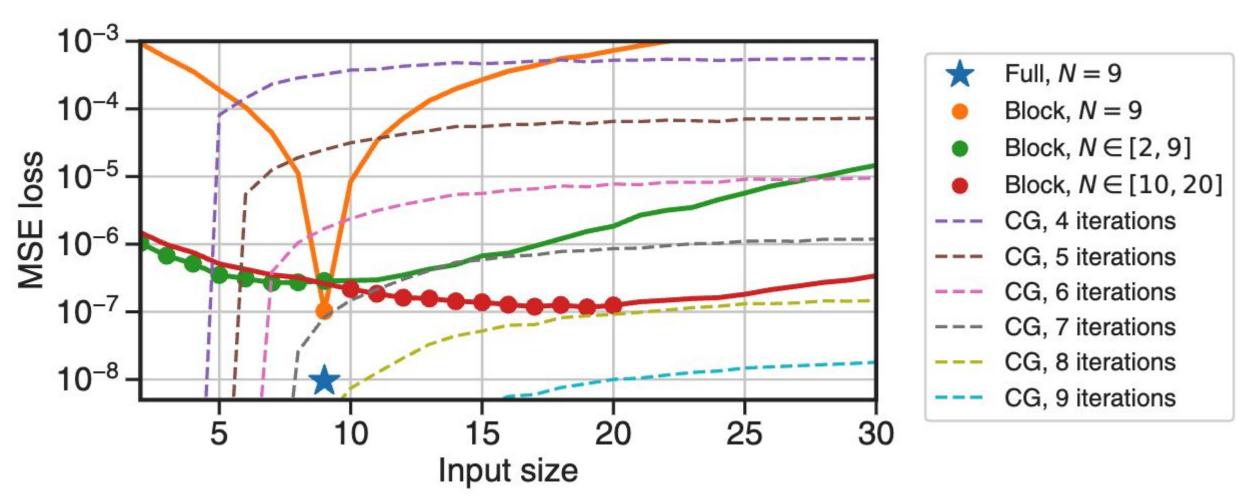
- Square matrices represented as scalar times identity, e.g. $P_{A \times A} = p_{A \times A}I$.
- Rectangular matrices represented as scalar times a vector of ones, e.g.

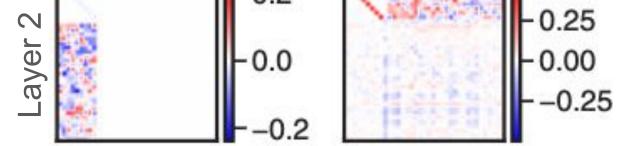
 $P_{A \times b} = p_{A \times b} 1$

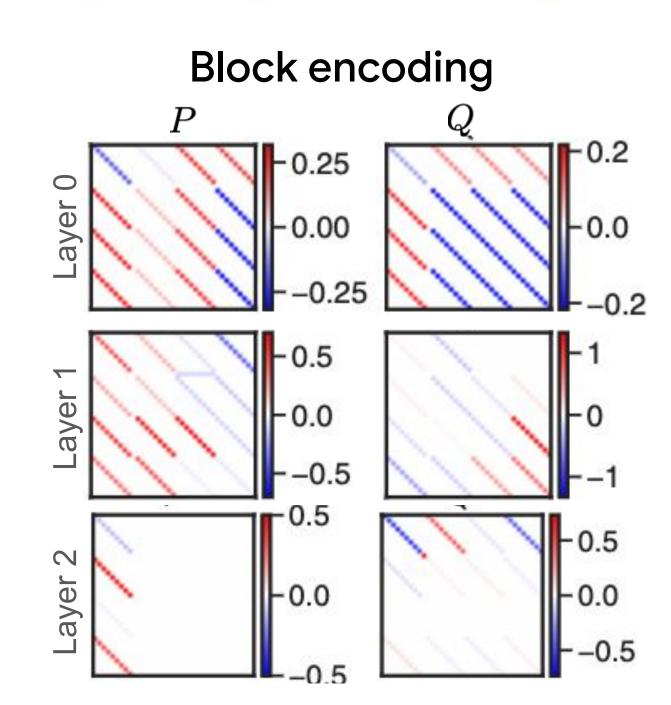
Motivation:

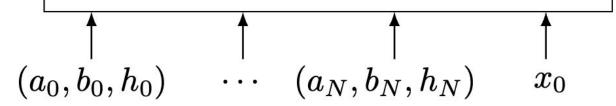
- Elements of A are sampled independently,
 => there is no bias for any dimension.
- Efficiency: identity matrices speed up computation
- Performance: comparable loss to training with full matrices.
- Generalization: Decouples problem dimension (N) from model parameters, enabling application and fine-tuning to different input sizes.

Experiments









Each equation is encoded as a token $e_i = (a_i, b_i, h_i)$, where $H = (h_0, h_1, ..., h_N)$ is an optional embedding matrix (either learned or predefined).

We append a query token $e_{N+1} = (x_0, 1_{1+K})$ to the sequence, where x_0 represents test data.

- Full, N=9. Full encoding, trained on N=9 problems only + 27-dim learned embedding *H*. This model cannot generalize to matrices of other sizes, but it achieves the best performance for problems of size N=9.
- Block, N=9. Block encoding, trained on N=9 problems only + three NxN fixed identity matrices H. The generalization quality is limited.
- Block, $N \in [2,9]$. Block encoding, trained on sizes $N \in [2,9]$ + three NxN fixed identity matrices H. Generalizes well beyond its training sizes.
- Block, $N \in [10,20]$. Block encoding, fine-tuned from model $N \in [2,9]$ above on sizes $N \in [10,20]$. Generalizes well beyond its training sizes.