

Fast, Accurate Spectral Clustering Using Locally Linear Landmarks

Max Vladymyrov Google Inc.

Miguel Á. Carreira-Perpiñán EECS, UC Merced

Spectral clustering

Focus on the problem of Spectral Clustering, where we try to split the dataset $\mathbf{Y} \in \mathbb{R}^{D \times N}$ into a set of K meaningful clusters.

- Compute the affinity matrix $\mathbf{W} \in \mathbb{R}^{N \times N}$ (e.g. Gaussian $w_{ij} = e^{-\|(\mathbf{y}_i \mathbf{y}_j)^2\|/2\sigma^2}$).
- Construct the degree matrix $\mathbf{D} = \operatorname{diag}(\mathbf{W1})$ and graph Laplacian (e.g. unnormalized $\mathbf{L} = \mathbf{D} \mathbf{W}$).
- find the low-dimensional projection $\mathbf{X} \in \mathbb{R}^{K \times N}$, by minimizing $\min_{\mathbf{X}} \operatorname{tr}(\mathbf{X} \mathbf{L} \mathbf{X}^T)$, s.t. $\mathbf{X} \mathbf{D} \mathbf{X}^T = \mathbf{I}$, $\mathbf{X} \mathbf{D} \mathbf{1} = \mathbf{0}$
- solution is given in the closed form by trailing eigenvectors of ${f D}^{-\frac{1}{2}}{f L}{f D}^{-\frac{1}{2}}$
- apply k-means on normalized projection to achieve the final clustering.

Problem: does not scale when the number of points is large!

Spectral clustering

Learning with landmarks

Goal is find a fast, approximate solution for the embedding \mathbf{X} using only the subset $\widetilde{\mathbf{Y}}$ of $L \ll N$ points from \mathbf{Y} .

Applications:

- When N is so large that the direct solution is infeasible.
- To select hyperparameters (e.g. for Gaussian kernel: k, σ) efficiently even if N is not large (since a grid search over these requires solving the eigenproblem many times).
- As an out-of-sample extension.

Learning with landmarks

Learning with landmarks

Problems:

- We need a way to project the non-landmark points, e.g. with Nyström method (Talwalkar el at, 2008).
- ullet Solving only on a subset ullet only, uses the information about the landmarks, but ignores information about non-landmarks. This requires using many landmarks to represent the data manifold well.
- If too few landmarks are used:
 - lacksquare Bad solution for the landmark projection $\ddot{\mathbf{X}} = \widetilde{\mathbf{x}}_1 \dots, \widetilde{\mathbf{x}}_L$
 - ...and bad prediction for the non-landmarks.

Locally Linear Landmarks (LLL)

(Vladymyrov and Carreira-Perpiñán, '13)

- For a set of landmarks $\widetilde{\mathbf{Y}}$ find a local reconstruction matrix $\mathbf{Z} \in \mathbb{R}^{N \times L}$ (e.g. by solving a liner system $\mathbf{Y} = \widetilde{\mathbf{Y}}\mathbf{Z}$). Locality is enforced by using only nearby landmarks when reconstructing \mathbf{Y} .
- Each projection then can be interpreted as a locally linear function of the landmarks:

$$\mathbf{x}_n = \sum_{l=1}^L z_{ln} \widetilde{\mathbf{x}}, n = 1, \dots, N \Rightarrow \mathbf{X} = \widetilde{\mathbf{X}} \mathbf{Z}$$

• Solving the original eigenproblem of $N \times N$ with this constraint results in a reduced eigenproblem of the same form but of $L \times L$ on $\widetilde{\mathbf{X}}$:

$$\min_{\widetilde{\mathbf{X}}} \operatorname{tr} \left(\widetilde{\mathbf{X}} \widetilde{\mathbf{A}} \widetilde{\mathbf{X}}^T \right) \text{ s.t. } \widetilde{\mathbf{X}} \widetilde{\mathbf{B}} \widetilde{\mathbf{X}}^T = \mathbf{I}$$

with reduced affinities $\widetilde{\mathbf{A}} = \mathbf{Z}\mathbf{L}\mathbf{Z}^T, \widetilde{\mathbf{B}} = \mathbf{Z}\mathbf{D}\mathbf{Z}^T$.

- After $\widetilde{\mathbf{X}}$ is found, the non-landmarks are predicted as $\mathbf{X} = \widetilde{\mathbf{X}}\mathbf{Z}$. (out-of-sample mapping).
- Final k-means step on $\mathbf X$ to find a resulting clusters.

LLL: reduced affinities

compute reconstruction weights \mathbf{Z} using $\mathbf{Y} = \widetilde{\mathbf{Y}}\mathbf{Z}$

$$\widetilde{\mathbf{A}} = \mathbf{Z}\mathbf{L}\mathbf{Z}$$

landmark projection ${f X}$

 $\frac{1}{k-\text{means}}$

LLL for spectral clustering

• Applied spectral clustering on 256x256 cameraman image (N=65536, D=3) with different number of landmarks.

LLL for spectral clustering

• Projection error reports the error of the projection matrix X with respect to the projection matrix of the exact LE.

Clustering error reports the final clustering error with respect to the exact LE.

LLL for custom affinities

- 1. Constrained spectral clustering. User provides additional mustand cannot- constrains.
- 2. Affinity aggregation. Using a linear combination of different affinities.
- 3. Motion Segmentation. affinity based on the spatio-temporal graph.
- 4. Proximity graph. Non-Gaussian affinity built using MST on multiple affinities.
- 5. LLL for hyperparameter selection. Fast search of the parameter space for the optimal set of hyperharapeters.
- 6. Out of sample extension. On-the-fly clustering assignment (using the landmark re-projection formula $\mathbf{X} = \widetilde{\mathbf{X}}\mathbf{Z}$).

Constrained spectral clustering

- We follow framework from (Lu and Carreira-Perpiñán, 2008).
- User additionally provides must and cannot link constraints using the sparse matrix ${f M}$. New affinities are computed as:

$$\overline{\mathbf{W}} = (\mathbf{W}^{-1} + \mathbf{M})^{-1} = \mathbf{W} - \mathbf{W}(\mathbf{I} + \mathbf{M}\mathbf{W})^{-1}\mathbf{M}\mathbf{W},$$

- Problems:
 - inverse ${f Q}=({f I}+{f M}{f W})^{-1}{f M}$ is slow: solve by rearranging the elements

inside sparse matrix ${f M}$.

• $\overline{\mathbf{W}}$ is much denser:

• Using LLL reduced affinities:

$$\mathbf{Z}\overline{\mathbf{L}}\mathbf{Z}^T = \mathbf{Z}\overline{\mathbf{D}}\mathbf{Z}^T - \mathbf{Z}\overline{\mathbf{W}}\mathbf{Z}^T$$

$$= \mathbf{Z}\operatorname{diag}\left(\mathbf{W}\mathbf{1}\right)\mathbf{Z}^{T} - \mathbf{Z}\operatorname{diag}\left(\mathbf{W}\mathbf{Q}\mathbf{W}\mathbf{1}\right)\mathbf{Z}^{T} - \mathbf{Z}\mathbf{W}\mathbf{Z}^{T} + \mathbf{Z}\mathbf{W}\mathbf{Q}\mathbf{W}\mathbf{Z}^{T}$$

By precomputing ${\bf ZW}$ and rearranging terms the overall complexity is ${\cal O}(cNL)$ and we don't need to compute $\overline{{\bf W}}$.

Constrained spectral clustering

- Problem of foreground segmentation:
 - · added few constraints for an image of three different sizes,
 - run Spectral Clustering (SC) and Constrained Spectral Clustering (CSC).
- LLL achieves 10x speedup for SC and >20x for CSC.

Image size	N	Time, seconds				
		SC,Exact	SC,LLL	CSC,Exact	CSC,LLL	
Small (64×94)	6 0 1 6	4.47	0.87	5.14	0.51	
Medium (160×240)	38400	44	4.66	104.49	6.51	
Large (321×481)	154401	512.01	48.19	$out ext{-}of ext{-}memory$	59.98	

Original image

SC with LLL

CSC with LLL

Affinity aggregation for spectral clustering

We follow (Huang et al, 2012) that propose to combine many affinities together.

• For a weighted affinity matrix $\overline{\mathbf{W}} = \sum_{k=1}^{K} v_k^2 \mathbf{W}^{(k)}$ minimize:

$$\min_{\mathbf{X}, \mathbf{v}} \mathbf{X} \overline{\mathbf{L}} \mathbf{X}^T$$
, s.t. $\mathbf{X} \overline{\mathbf{D}} \mathbf{X}^T = \mathbf{I}, \mathbf{v}^T \mathbf{1} = 1$,

- Solve by alternating minimization between \mathbf{v} and \mathbf{X} . For each iteration:
 - v: ID root-finding that can be solved in a few iterations.
 - X: eigendecomposition of \overline{L} .
- Using LLL:

$$\widetilde{\mathbf{L}} = \mathbf{Z}\overline{\mathbf{D}}\mathbf{Z}^T - \mathbf{Z}\overline{\mathbf{W}}\mathbf{Z}^T = \sum_{k=1}^K v_k^2 \mathbf{Z}\mathbf{D}^{(k)}\mathbf{Z}^T - \sum_{k=1}^K v_k^2 \mathbf{Z}\mathbf{W}^{(k)}\mathbf{Z}^T.$$

Each of $\mathbf{Z}\mathbf{W}^{(k)}\mathbf{Z}^T$ can be precomputed just once and are $L \times L$. The rest of operations are independent from N.

Affinity aggregation for spectral clustering

- We used N=11368 faces from CMU-PIE dataset (each face is an 64x64 image in near frontal position).
- We used 3 types of affinities:
 - Local Binary Pattern (LBP),
 - Gabor texture,
 - Eigenfaces.

			Combined		
Features		LBP	Gabor filter	Eigenface	AASC
Class. error, %	Exact	43	48	56	39
	LLL	44 ± 1	49 ± 2	56 ± 1	39 ± 3
Runtime, s	Exact	78	85	105	1 063
	LLL	8.15 ± 0.5	8.76 ± 0.7	8.23 ± 0.8	28.2 ± 2.1
Proj. error, %		4 ± 0.8	3 ± 1	1 ± 0.5	3 ± 2

- Combined affinities achieve lower error than any affinity on its own.
- LLL achieves similar accuracy with 35x speedup.

Motion segmentation

- 41 frames with each frame 120×160 image. Spatio-temporal affinities with 2 spatial, 3 color and 1 for a frame number. Overall N=787200 with D=6.
- Used L=5000 landmarks and t=3 minutes.

Nystrom (full affinity)

Nystrom (sparse affinity)

Conclusions

- Spectral clustering is a useful framework for clustering data, however, it does not scale well due to a eigendecomposition of a large NxN affinity matrix.
- Local Linear Landmarks provides a simple approximation algorithm that constructs smaller LxL affinities by incorporating local connection between *all* the affinities.
- The algorithm robustly shows > 10x speedup with error within 1% of the exact method.
- It can be easily extended to a variety of useful settings:
 - constrained spectral clustering,
 - affinity aggregation,
 - motion segmentation,
 - etc.