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Graph based dimensionality reduction methods

Given high-dimensional data points Y pxn = (¥y1, - - -

|.Convert data points to a N x N affinity matrix M.
2. Find low-dimensional coordinates Xyxny = (X1,...,Xn), SO
that their similarity I1s as close as possible to M.
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Spectral methods

» Consider a spectral problem:

minx tr (XMX”") st. XX =1,

» My« v Symmetric psd affinity matrix.

* Examples:

4
4
4

_aplacian eigenmaps, Mis a graph Laplacian.
SOMAR M is given by a matrix of shortest distances.

Kernel PCA, MDS, Locally Linear Embedding (LLE), etc.

* Solution Is unigue and can be found In closed form from the
eigenvectors of M: X = Uyy.

With large IV, solving the eigenproblem s infeasible even It M

S sparse.



Learning with landmarks

Goal Is Tind a fast, approximate solution for the embedding X
using only the subset of the original points from'Y.

Select L landmarks Compute reduced | earn landmark Projec't the rest
(e.g. random SUbSGt) L x L afﬂmty matrix represen'ta'tion of the poin‘ts
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Nystrom method

Writing the affinity matrix IMI by blocks (landmarks first):

h - CI

The approximation to the eigendecomposition is equal to:

~ Ua
UM = _
v (BZlUAAA1>

Essentially, an out-of-sample formula:
|. Solve the eigenproblem for a subset of points.
2. Predict the rest of the points through the interpolation formula.



Column Sampling method

Writing the affinity matrix IMI by blocks (landmarks first):

The approximation to the eigendecomposition Is given by the left
singular vectors of C;

C=UcEcVE = Unm=Uc

Uses more information from the affinity matrix IM than Nystrom, but
still ignores non-landmark/non-landmark interaction part Bos .



LOcaI Iy I._i near Landmarks (I_ I_ I_) (Vladymyrov & Carreira-Perpinan, 2013)

e Construc

Yn

. the local linear projection matrix Z from the input Y
%Zlezlngf/l,n:L...,N — Y%?ZT

* Additional assumption: this projection is satisfied in the
embedding space: X = XZ* .

* Plugging the projection to the original obj. function:
miny tr (XMX7T) st. XXT =1, X = XZ7

|

ming tr (XZ'MZX?) st XZTZXT =1

* The solution Is given by the reduced generalized eigenproblem:

* Final emb
* This solut

X = eig(ZMZ',ZZ")
edding are predicted as: X = XZ7
ion 1s optimal given the constraint X = XZ"



Generalizing approximations
Nystrom:

Expand the upper part: N ox T,

- Ua AUAA, ~ L
Uwnt = B = CUAA

M <B21UAAA1> <B21UAA ) LA“’”dA
X

Column Sampling:
Rewrite using the eigendecomposition of L x L matrix C* C:

Um = Ug = CVe3Eg! = CUgrcA L

LLL:

Rewrite the solution X = XZ7 as INJM — ZfiT, where X is
computed optimally (givenZ) as:

~

X = eig(ZMZ' ,Z7")



Generalizing approximations

Nystrom:
|. Solve the smaller L x L eigendecomposition:
A =UpAAU,
2. Apply N x L out-of-sample matrix:
Um = CUAA '
Column Sampling:
|. Solve the smaller L x L eigendecomposition:
CTC — UCTCACTCUCTC
2. Apply N x L out—of—sample matrix:

Um = CUcrcA

LLL:
|. Solve the smaller L x L eigendecomposition:
X = eig(ZMZ", 727"

2. Apply N x L out-of-sample matrix:

Upn = ZX7



Generalizing approximations

Fach approximation consist of the following steps:
* define an out-of-sample matrix Zy« 1,
* compute some reduced eigenproblem and a matrix Q1 x4 that
depends on 1t N
* final approximation iIs equal to Upnt = ZQ).

Eigenproblem AU = BUA;

_______________________________________________________________________________ Zv>e  AB. o Qpxa
Nystrém ' C Al UA ™!

""" CoumnSamping € ZTZT | UAY?

""""""""""""" LLLYYZZMZTZTZU
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Generalizing approximations

Fach approximation consist of the following steps:
* define an out-of-sample matrix Zy« 1,
* compute some reduced eigenproblem and a matrix Q1 x4 that
depends on 1t N
* final approximation iIs equal to Upnt = ZQ).

Eigenproblem AU = BUA;

_______________________________________________________________________________ Zyxp  AB o Qrxa
Nystrom | C AT UA™!

""" CoumnSamping € ZTZT | UAY?

""""""""""""" LLLyyzzszszU

Rendom Projecton. ar(M9S)  zMz7,Z7Z U

VarigtonalNystom € ZMZT.zzT U
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Variational Nystrom

Add this Nystrom out-of-sample constraint to the spectral problem:
miny tr (XMXT) s.t. XXT' =1, X=XCt

ming tr (XCTMCX") st XCTCXT =1

From LLL perspective:

* replace customary built out-of-sample matrix Z with a readily
available column matrix C,

- abandon local linearity assumption of the weights Z

* save computation of Z,

» 715 usually sparser than C (due to locality).




Variational Nystrom

Add this Nystrom out-of-sample constraint to the spectral problem:
miny tr (XMXT) s.t. XXT' =1, X=XCt

ming tr (XCTMCX") st XCTCXT =1

From Nystrom perspective:

* use the same out-of-sample matrix C, but optimize the choice of
the reduced eigenproblem,

- for fixed Y gives better approx. than Nystrém or Column
Sampling (optimal for the out-of-sample kernel C).

» uses all the elements from M to construct the reduced
elgenproblem,

- forgo the interpolating property of Nystrom.
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Subsampling graph Laplacian

» Consider M given by normalized graph Laplacian matrix:
Lo D /2WD™ /2
- Gaussian affinity matrix: Wy, = exp(—|y2 — y2 ||/20?)
- Degree matrix: D = diag (fo:l Wrm )
+ One of the most widely used kernel (Laplacian Eigenmaps, spectral
clustering).

» Graph Laplacian kernel I1s a data dependent:

oraph Laplacian computed for a subset # L X L subset of graph Laplacian
of L input points constructed for N points.
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Subsampling graph Laplacian

- Data dependance can be a problem for methods that depend
on the subsampling:
- Nystrom,
- Column Sampling,
- Variational Nystrom.
 Not a problem methods for which there i1s no subsampling:
- LLL,
- Random projection.

Our solution: normalize subsample kernel separately, but in a way that
interpolates over the landmarks and gives exact solution when L = NV:
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Subsampling graph Laplacian

» For Nystrom and Column Sampling:
» we propose different forms for D1 and Do,
- we evaluate empirically which one is the best.
» For Variational Nystrom:
+ we showed that D5 factors out,
- any D leads to the exact solution when L, = N.

For the graph Laplacian kernel, the Variational Nystrom
approximation i1s more general.
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Experiments: Laplacian eigenmaps

* Reduce dimensionality of N = 20 000 digits from MNIST d = 10.

 Run 5 times for different randomly chosen landmarks from L = 11
to L = 19900.
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Experiments: Laplacian eigenmaps

* Reduce dimensionality of N = 20 000 digits from MNIST d = 10.

 Run 5 times for different randomly chosen landmarks from L = 11
to L = 19900.
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Experiments: Laplacian eigenmaps

* Reduce dimensionality of N = 20 000 digits from MNIST d = 10.

 Run 5 times for different randomly chosen landmarks from L = 11
to L = 19900.
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Experiments: Laplacian eigenmaps

* Reduce dimensionality of N = 20 000 digits from MNIST d = 10.
 Run 5 times for different randomly chosen landmarks from L = 11

to L = 19900.
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Experiments: Spectral clustering

Original image Exact Spectral clustering,t = 512s

Variational Nystrom, ¢ = 25s
20x speedup!
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infiniteMNIST embedding

Embedding of N = 1020000 digits from MNIST. Fix the runtime to

t =10 min

O©OCoONOOOLPHA~,WDN—=-O0O

Nystrom
= 16 000

LLL Variational Nystrom
= 5000 = 4500
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Conclusions

* [The Variational Nystrom method is the optimal way to
use the out-of-sample Nystrom formula to solve an
eigenproblem approximately. It is able to achieve a low-
to-medium accuracy solution faster than Nystrom and
other methods.

 We present a simple unified model of spectral
clustering approximations, combining many existing
algorithms such as Nystrom, Column Sampling, LLL.

* We study the role of normalization in subsampling of the
graph Laplacian kernel and show that Variational
Nystrom is more general for this kernel.
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