

International Conference on Machine Learning

The Variational Nyström Method for Large-Scale Spectral Problems

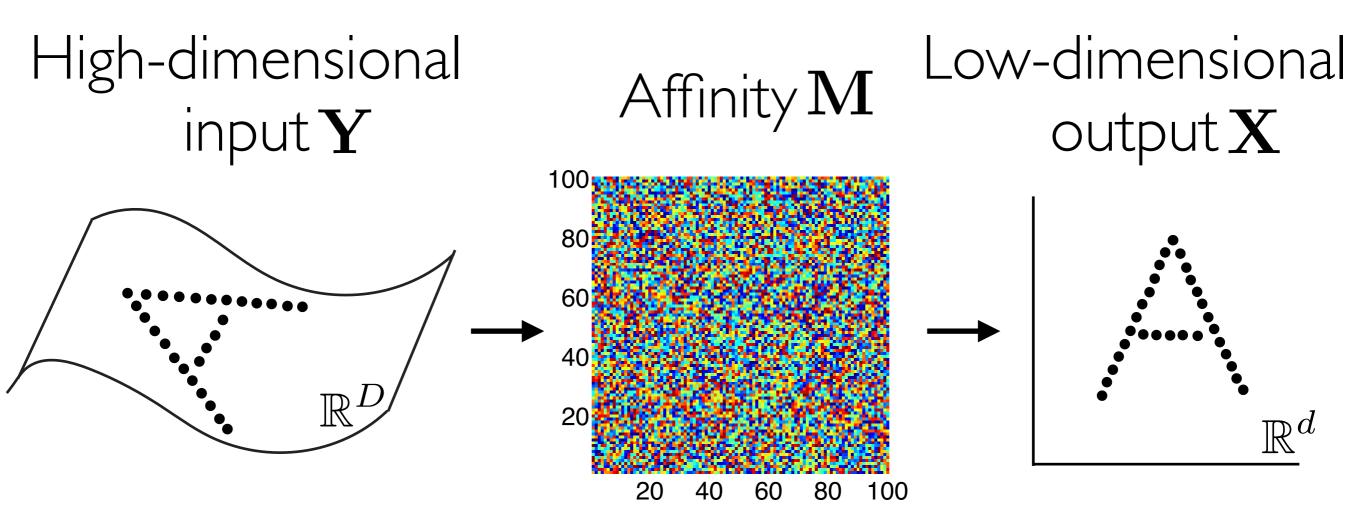
Max Vladymyrov Google Inc.

Miguel Carreira-Perpiñán EECS, UC Merced

June 20, 2016

Graph based dimensionality reduction methods

Given high-dimensional data points Y_{D×N} = (y₁,..., y_N).
I. Convert data points to a N × N affinity matrix M.
2. Find low-dimensional coordinates X_{d×N} = (x₁,..., x_N), so that their similarity is as close as possible to M.



Spectral methods

• Consider a spectral problem:

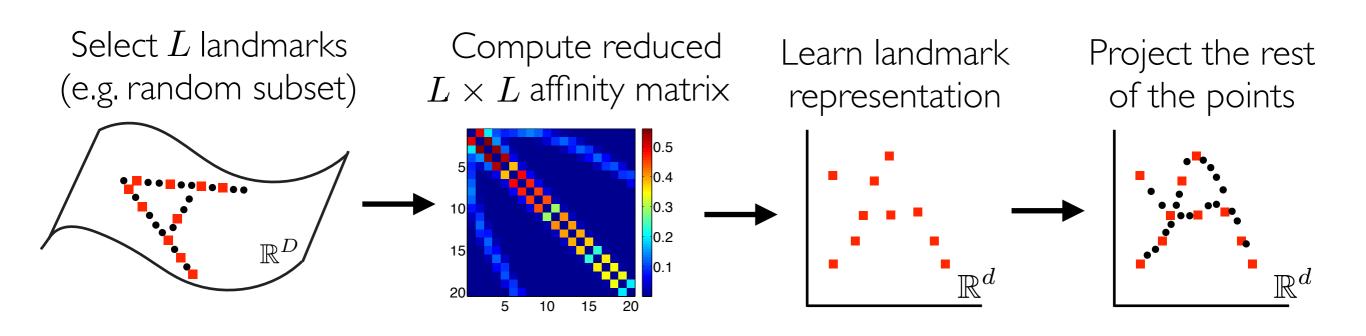
 $\min_{\mathbf{X}} \operatorname{tr} \left(\mathbf{X} \mathbf{M} \mathbf{X}^T \right) \quad \text{s.t.} \quad \mathbf{X} \mathbf{X}^T = \mathbf{I},$

- $\mathbf{M}_{N \times N}$: symmetric psd affinity matrix.
- Examples:
 - \blacktriangleright Laplacian eigenmaps, ${\bf M}$ is a graph Laplacian.
 - \bullet ISOMAP, M is given by a matrix of shortest distances.
 - Kernel PCA, MDS, Locally Linear Embedding (LLE), etc.
- Solution is unique and can be found in closed form from the eigenvectors of \mathbf{M} : $\mathbf{X} = \mathbf{U}_{\mathbf{M}}^{T}$.

With large N, solving the eigenproblem is infeasible even if ${f M}$ is sparse.

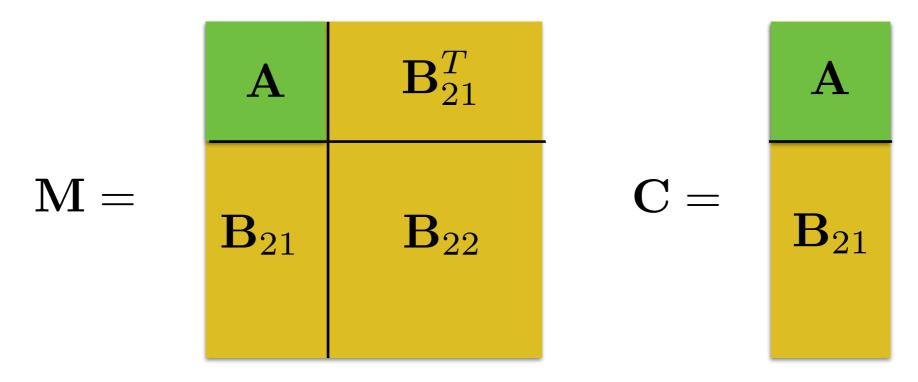
Learning with landmarks

Goal is find a fast, approximate solution for the embedding ${f X}$ using only the subset of the original points from ${f Y}$.



Nyström method

Writing the affinity matrix ${f M}$ by blocks (landmarks first):



The approximation to the eigendecomposition is equal to:

$$\widetilde{\mathbf{U}}_{\mathbf{M}} = \begin{pmatrix} \mathbf{U}_{\mathbf{A}} \\ \mathbf{B}_{21}\mathbf{U}_{\mathbf{A}}\mathbf{\Lambda}_{\mathbf{A}}^{-1} \end{pmatrix}$$

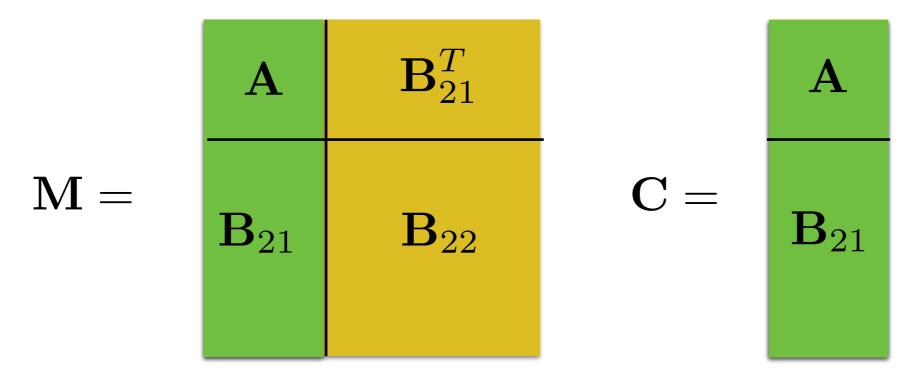
Essentially, an out-of-sample formula:

I. Solve the eigenproblem for a subset of points.

2. Predict the rest of the points through the interpolation formula.

Column Sampling method

Writing the affinity matrix ${f M}$ by blocks (landmarks first):



The approximation to the eigendecomposition is given by the left singular vectors of ${\bf C}$:

$$\mathbf{C} = \mathbf{U}_{\mathbf{C}} \mathbf{\Sigma}_{\mathbf{C}} \mathbf{V}_{\mathbf{C}}^T \quad \Rightarrow \quad \widetilde{\mathbf{U}}_{\mathbf{M}} = \mathbf{U}_{\mathbf{C}}$$

Uses more information from the affinity matrix M than Nyström, but still ignores non-landmark/non-landmark interaction part B_{22} .

Locally Linear Landmarks (LLL) (Vladymyrov & Carreira-Perpiñán, 2013)

- Construct the local linear projection matrix \mathbf{Z} from the input \mathbf{Y} : $\mathbf{y}_n \approx \sum_{l=1}^L z_{ln} \widetilde{\mathbf{y}}_l, n = 1, \dots, N \quad \Rightarrow \quad \mathbf{Y} \approx \widetilde{\mathbf{Y}} \mathbf{Z}^T$
- Additional assumption: this projection is satisfied in the embedding space: $\mathbf{X} = \widetilde{\mathbf{X}} \mathbf{Z}^T$.
- The solution is given by the reduced generalized eigenproblem: $\widetilde{\mathbf{X}} = eig(\mathbf{Z}\mathbf{M}\mathbf{Z}^T,\mathbf{Z}\mathbf{Z}^T)$
- Final embedding are predicted as: $\mathbf{X} = \widetilde{\mathbf{X}} \mathbf{Z}^T$.
- This solution is optimal given the constraint $\mathbf{X} = \widetilde{\mathbf{X}} \mathbf{Z}^T$.

Nyström:

Expand the upper part:

$$\widetilde{\mathbf{U}}_{\mathbf{M}} = \begin{pmatrix} \mathbf{U}_{\mathbf{A}} \\ \mathbf{B}_{21}\mathbf{U}_{\mathbf{A}}\boldsymbol{\Lambda}_{\mathbf{A}}^{-1} \end{pmatrix} = \begin{pmatrix} \mathbf{A}\mathbf{U}_{\mathbf{A}}\boldsymbol{\Lambda}_{\mathbf{A}}^{-1} \\ \mathbf{B}_{21}\mathbf{U}_{\mathbf{A}}\boldsymbol{\Lambda}_{\mathbf{A}}^{-1} \end{pmatrix} = \underbrace{\widetilde{\mathbf{C}}\mathbf{U}_{\mathbf{A}}\boldsymbol{\Lambda}_{\mathbf{A}}^{-1}}_{L \times d}$$

Column Sampling:

Rewrite using the eigendecomposition of $L \times L$ matrix $\mathbf{C}^T \mathbf{C}$: $\widetilde{\mathbf{U}}_{\mathbf{M}} = \mathbf{U}_{\mathbf{C}} = \mathbf{C} \mathbf{V}_{\mathbf{C}} \boldsymbol{\Sigma}_{\mathbf{C}}^{-1} = \mathbf{C} \mathbf{U}_{\mathbf{C}^T \mathbf{C}} \boldsymbol{\Lambda}_{\mathbf{C}^T \mathbf{C}}^{-1/2}$

LLL:

Rewrite the solution $\mathbf{X} = \widetilde{\mathbf{X}} \mathbf{Z}^T$ as $\widetilde{\mathbf{U}}_{\mathbf{M}} = \mathbf{Z} \widetilde{\mathbf{X}}^T$, where $\widetilde{\mathbf{X}}$ is computed optimally (given \mathbf{Z}) as:

$$\widetilde{\mathbf{X}} = \operatorname{eig}(\mathbf{Z}\mathbf{M}\mathbf{Z}^T, \mathbf{Z}\mathbf{Z}^T)$$

Nyström:

1. Solve the smaller $L \times L$ eigendecomposition: $\mathbf{A} = \mathbf{U}_{\mathbf{A}} \mathbf{\Lambda}_{\mathbf{A}} \mathbf{U}_{\mathbf{A}}^{T}$ 2. Apply $N \times L$ out-of-sample matrix: $\widetilde{\mathbf{U}}_{\mathbf{M}} = \mathbf{C}\mathbf{U}_{\mathbf{A}}\boldsymbol{\Lambda}_{\mathbf{A}}^{-1}$ **Column Sampling:** I. Solve the smaller $L \times L$ eigendecomposition: $\mathbf{C}^T \mathbf{C} = \mathbf{U}_{\mathbf{C}^T \mathbf{C}} \mathbf{\Lambda}_{\mathbf{C}^T \mathbf{C}} \mathbf{U}_{\mathbf{C}^T \mathbf{C}}$ 2. Apply $N \times L$ out-of-sample matrix: $\widetilde{\mathbf{U}}_{\mathbf{M}} = \mathbf{C}\mathbf{U}_{\mathbf{C}^{T}\mathbf{C}}\mathbf{\Lambda}_{\mathbf{C}^{T}\mathbf{C}}^{-1/2}$

LLL:

1. Solve the smaller $L \times L$ eigendecomposition: $\widetilde{\mathbf{X}} = \operatorname{eig}(\mathbf{Z}\mathbf{M}\mathbf{Z}^T, \mathbf{Z}\mathbf{Z}^T)$ 2. Apply $N \times L$ out-of-sample matrix: $\widetilde{\mathbf{U}}_{\mathbf{M}} = \mathbf{Z}\widetilde{\mathbf{X}}^T$

Each approximation consist of the following steps:

- define an out-of-sample matrix $\mathbf{Z}_{N \times L}$,
- \bullet compute some reduced eigenproblem and a matrix $\mathbf{Q}_{L\times d}$ that depends on it,
- final approximation is equal to $\widetilde{\mathbf{U}}_{\mathbf{M}} = \mathbf{Z}\mathbf{Q}$.

	$\mathbf{Z}_{N imes L}$	Eigenproblem $\mathcal{A}\mathbf{U}=\mathcal{B}\mathbf{U}\mathbf{\Lambda}$ \mathcal{A},\mathcal{B}	$\mathbf{Q}_{L imes d}$
Nyström	\mathbf{C}	\mathbf{A}, \mathbf{I}	$\mathbf{U} \mathbf{\Lambda}^{-1}$
Column Sampling	\mathbf{C}	$\mathbf{Z}^T \mathbf{Z}, \mathbf{I}$	$\mathbf{U} \mathbf{\Lambda}^{-1/2}$
LLL	computed $\mathbf{Y} pprox \widetilde{\mathbf{Y}} \mathbf{Z}$		${f U}$
Random Projection		$\mathbf{Z}\mathbf{M}\mathbf{Z}^T, \mathbf{Z}^T\mathbf{Z}$	${f U}$

Each approximation consist of the following steps:

- define an out-of-sample matrix $\mathbf{Z}_{N \times L}$,
- \bullet compute some reduced eigenproblem and a matrix $\mathbf{Q}_{L\times d}$ that depends on it,
- final approximation is equal to $\widetilde{\mathbf{U}}_{\mathbf{M}} = \mathbf{Z}\mathbf{Q}$.

	$\mathbf{Z}_{N imes L}$	Eigenproblem $\mathcal{A}\mathbf{U}=\mathcal{B}\mathbf{U}\mathbf{\Lambda}$ \mathcal{A},\mathcal{B}	$\mathbf{Q}_{L imes d}$
Nyström	С	\mathbf{A},\mathbf{I}	$\mathbf{U} \mathbf{\Lambda}^{-1}$
Column Sampling	С	$\mathbf{Z}^T \mathbf{Z}, \mathbf{I}$	$\mathbf{U} \mathbf{\Lambda}^{-1/2}$
LLL	computed $\mathbf{Y} pprox \widetilde{\mathbf{Y}} \mathbf{Z}$ from	$\mathbf{Z}\mathbf{M}\mathbf{Z}^T, \mathbf{Z}^T\mathbf{Z}$	${f U}$
Random Projection	$\operatorname{qr}(\mathbf{M}^{q}\mathbf{S})$	$\mathbf{Z}\mathbf{M}\mathbf{Z}^T, \mathbf{Z}^T\mathbf{Z}$	${f U}$
Variational Nyström	С	$\mathbf{Z}\mathbf{M}\mathbf{Z}^T,\mathbf{Z}\mathbf{Z}^T$	${f U}$

Variational Nyström

Add this Nyström out-of-sample constraint to the spectral problem: $\min_{\mathbf{X}} \operatorname{tr} (\mathbf{X}\mathbf{M}\mathbf{X}^T) \quad \text{s.t.} \quad \mathbf{X}\mathbf{X}^T = \mathbf{I}, \ \mathbf{X} = \widetilde{\mathbf{X}}\mathbf{C}^T$

$$\min_{\widetilde{\mathbf{X}}} \operatorname{tr} \left(\widetilde{\mathbf{X}} \mathbf{C}^T \mathbf{M} \mathbf{C} \widetilde{\mathbf{X}}^T \right) \quad \text{s.t.} \quad \widetilde{\mathbf{X}} \mathbf{C}^T \mathbf{C} \widetilde{\mathbf{X}}^T = \mathbf{I}$$

From LLL perspective:

- replace customary built out-of-sample matrix ${\bf Z}$ with a readily available column matrix ${\bf C},$
- abandon local linearity assumption of the weights ${f Z}$,
- save computation of ${f Z}$,
- ${f Z}$ is usually sparser than ${f C}$ (due to locality).

Variational Nyström

Add this Nyström out-of-sample constraint to the spectral problem: $\min_{\mathbf{X}} \operatorname{tr} (\mathbf{X}\mathbf{M}\mathbf{X}^T) \quad \text{s.t.} \quad \mathbf{X}\mathbf{X}^T = \mathbf{I}, \ \mathbf{X} = \widetilde{\mathbf{X}}\mathbf{C}^T$

$$\min_{\widetilde{\mathbf{X}}} \operatorname{tr} \left(\widetilde{\mathbf{X}} \mathbf{C}^T \mathbf{M} \mathbf{C} \widetilde{\mathbf{X}}^T \right) \quad \text{s.t.} \quad \widetilde{\mathbf{X}} \mathbf{C}^T \mathbf{C} \widetilde{\mathbf{X}}^T = \mathbf{I}$$

From Nyström perspective:

- use the same out-of-sample matrix ${f C}$, but optimize the choice of the reduced eigenproblem,
- for fixed $\widetilde{\mathbf{Y}}$ gives better approx. than Nyström or Column Sampling (*optimal* for the out-of-sample kernel \mathbf{C}).
- uses all the elements from ${\bf M}$ to construct the reduced eigenproblem,
- forgo the interpolating property of Nyström.

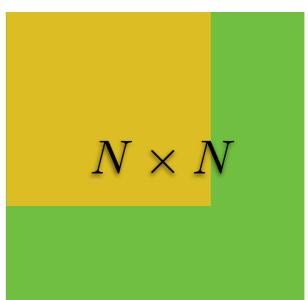
Subsampling graph Laplacian

- Consider M given by normalized graph Laplacian matrix: ${\bf L}\propto {\bf D}^{-1/2}{\bf W}{\bf D}^{-1/2}$
 - Gaussian affinity matrix: $w_{nm} = \exp(-\|\mathbf{y}_n^2 \mathbf{y}_m^2\|/2\sigma^2)$
 - Degree matrix: $\mathbf{D} = \operatorname{diag}\left(\sum_{m=1}^{N} w_{nm}\right)$
- One of the most widely used kernel (Laplacian Eigenmaps, spectral clustering).
- Graph Laplacian kernel is a *data dependent*:

graph Laplacian computed for a subset \neq of L input points

 $L \times L$

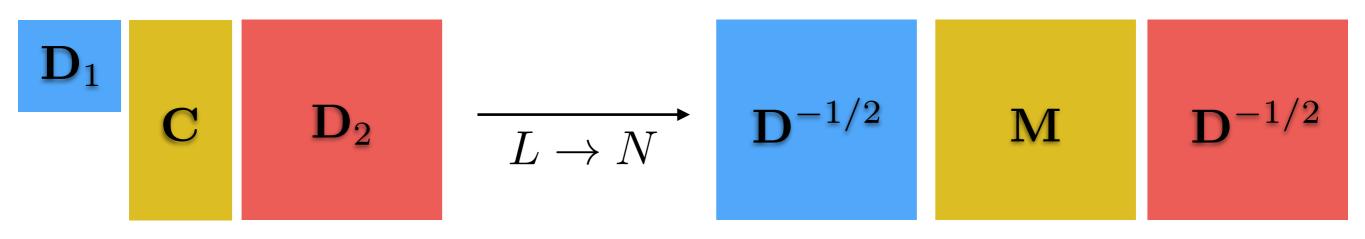
 $L \times L$ subset of graph Laplacian constructed for N points.



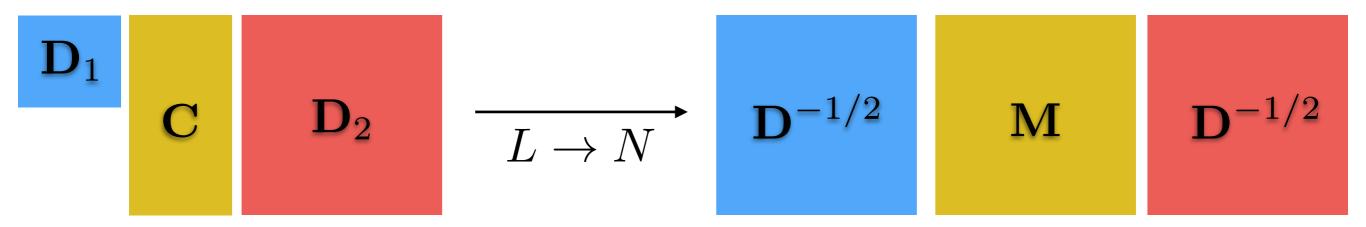
Subsampling graph Laplacian

- Data dependance can be a problem for methods that depend on the subsampling:
 - Nyström,
 - Column Sampling,
 - Variational Nyström.
- Not a problem methods for which there is no subsampling:
 LLL.
 - Random projection.

Our solution: normalize subsample kernel separately, but in a way that interpolates over the landmarks and gives exact solution when L = N:



Subsampling graph Laplacian

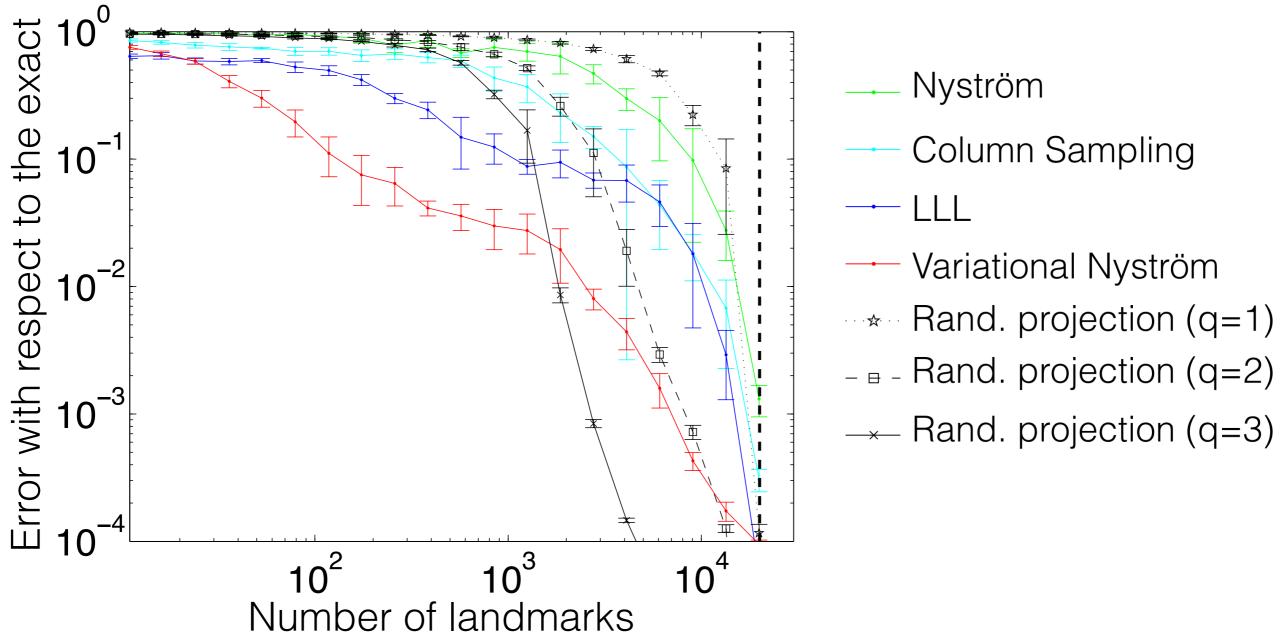


• For Nyström and Column Sampling:

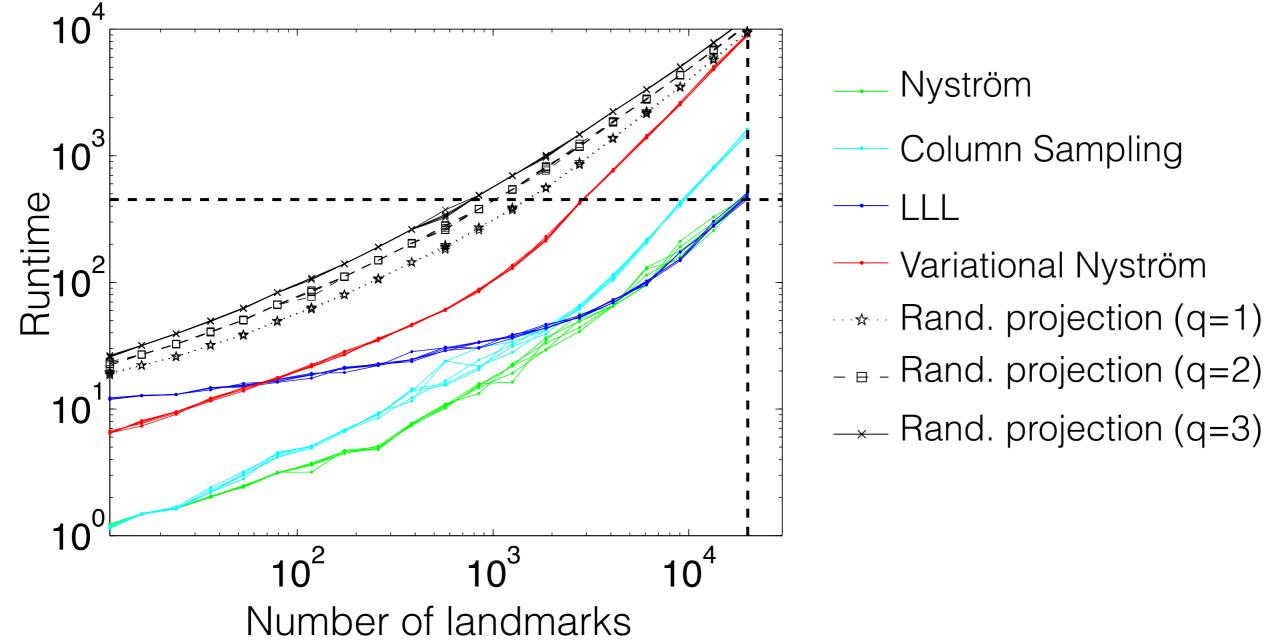
- we propose different forms for \mathbf{D}_1 and \mathbf{D}_2 ,
- we evaluate empirically which one is the best.
- For Variational Nyström:
 - we showed that \mathbf{D}_2 factors out,
 - any \mathbf{D}_1 leads to the exact solution when L = N.

For the graph Laplacian kernel, the Variational Nyström approximation is more general.

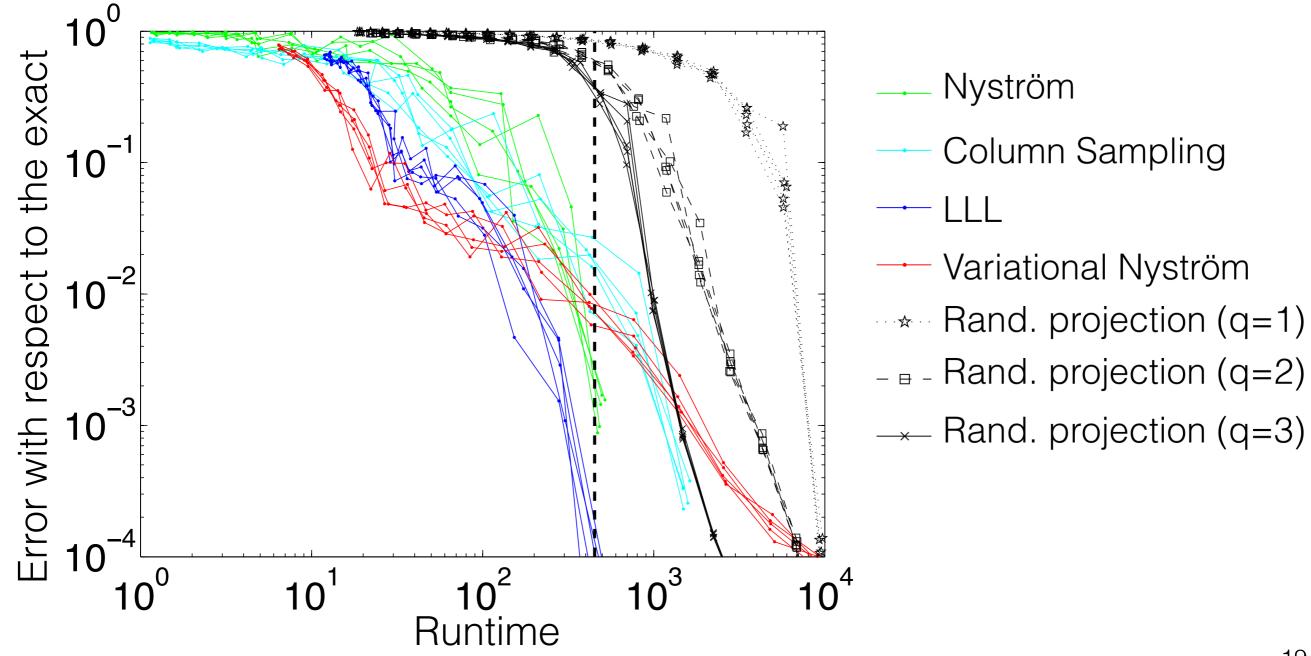
- Reduce dimensionality of $N=20\,000$ digits from MNIST d=10.
- Run 5 times for different randomly chosen landmarks from L=11 to $L=19\,900.$



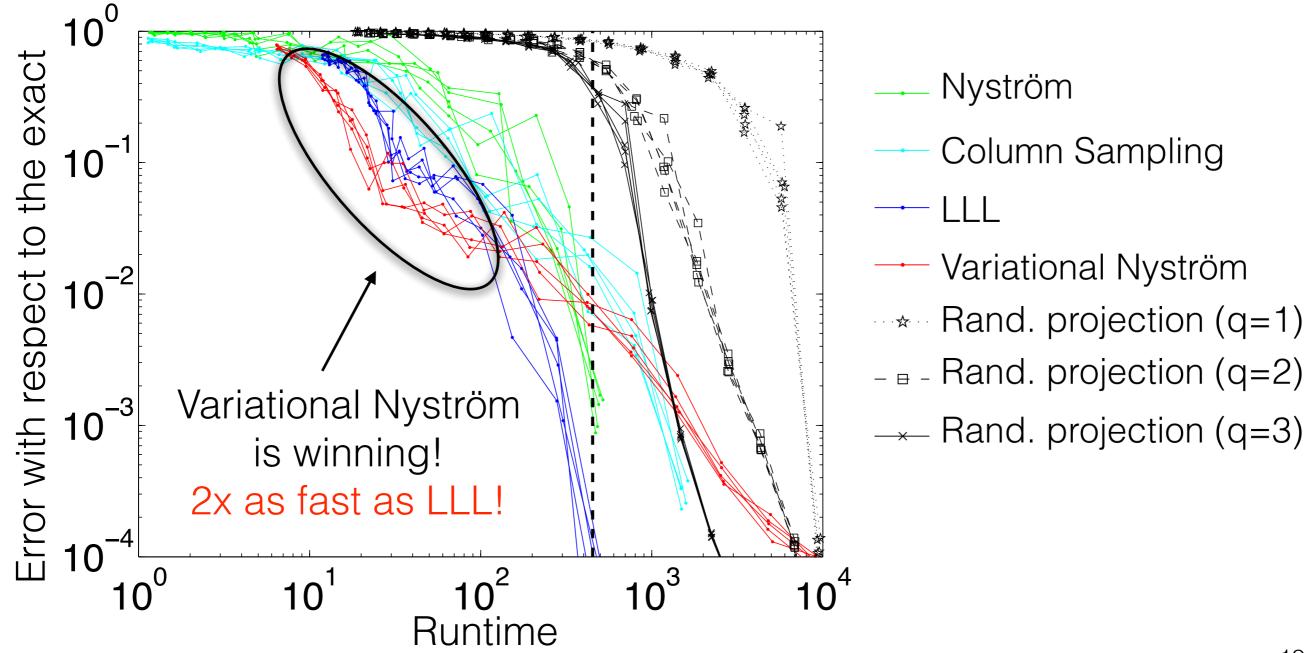
- Reduce dimensionality of $N=20\,000$ digits from MNIST d=10.
- Run 5 times for different randomly chosen landmarks from L=11 to $L=19\,900.$



- Reduce dimensionality of $N=20\,000$ digits from MNIST d=10.
- Run 5 times for different randomly chosen landmarks from L=11 to $L=19\,900.$

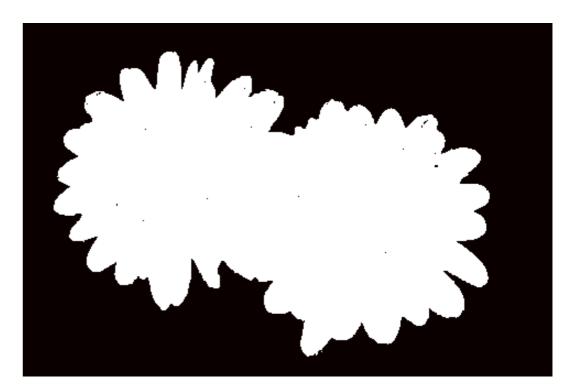


- Reduce dimensionality of $N=20\,000$ digits from MNIST d=10.
- Run 5 times for different randomly chosen landmarks from L=11 to $L=19\,900.$



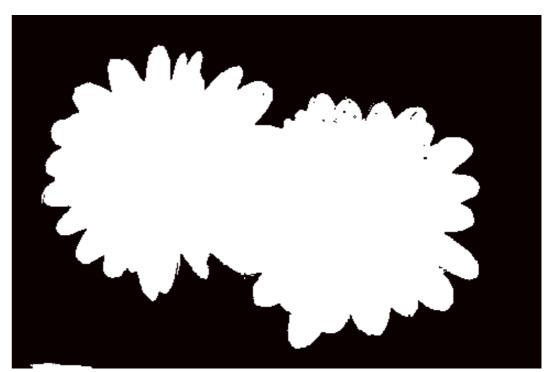
Experiments: Spectral clustering

Original image



Exact Spectral clustering, t = 512s

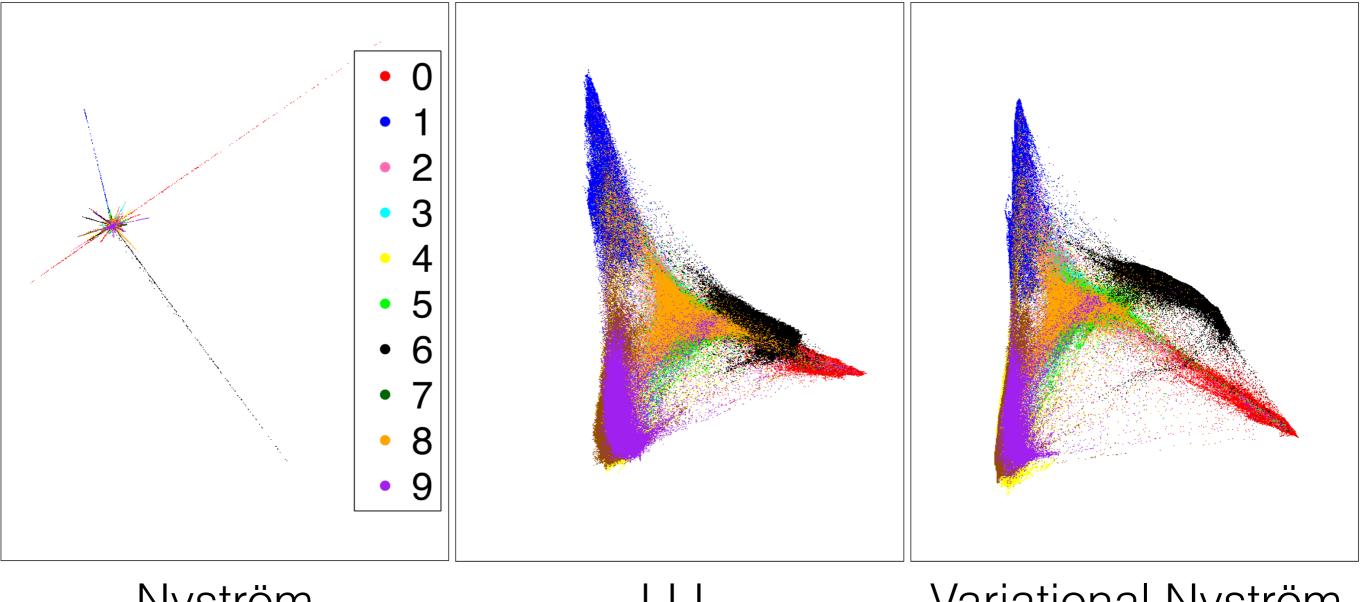
Nyström, t = 25s



Variational Nyström, t = 25s20x speedup!

infiniteMNIST embedding

Embedding of $N=1\,020\,000\,$ digits from MNIST. Fix the runtime to $t=10\,$ min



Nyström $L = 16\,000$

 $L = 5\,000$

Variational Nyström $L = 4\,500$

Conclusions

- The Variational Nyström method is the optimal way to use the out-of-sample Nyström formula to solve an eigenproblem approximately. It is able to achieve a lowto-medium accuracy solution faster than Nyström and other methods.
- We present a simple unified model of spectral clustering approximations, combining many existing algorithms such as Nyström, Column Sampling, LLL.
- We study the role of normalization in subsampling of the graph Laplacian kernel and show that Variational Nyström is more general for this kernel.

Poster #64 tomorrow (10am-1pm)

Partially supported by NSF award IIS-1423515