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M
Given high-dimensional data points                                    .
1. Convert data points to a            affinity matrix     .          
2. Find low-dimensional coordinates                                 , so 

that their similarity is as close as possible to     .

YD⇥N = (y1, . . . ,yN )
N ⇥N
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Spectral methods
• Consider a spectral problem:

‣           : symmetric psd affinity matrix.

• Examples:
‣ Laplacian eigenmaps,     is a graph Laplacian.
‣ ISOMAP,      is given by a matrix of shortest distances.
‣ Kernel PCA, MDS, Locally Linear Embedding (LLE), etc.

• Solution is unique and can be found in closed form from the 
eigenvectors of     :               .

With large    , solving the eigenproblem is infeasible even if        
is sparse.
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Learning with landmarks

Compute reduced      
.        affinity matrix
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Goal is find a fast, approximate solution for the embedding     
using only the subset of the original points from   . 
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Nyström method

Essentially, an out-of-sample formula: 
1. Solve the eigenproblem for a subset of points.
2. Predict the rest of the points through the interpolation formula.

Writing the affinity matrix      by blocks (landmarks first):M

The approximation to the eigendecomposition is equal to:

eUM =

✓
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B21UA⇤�1
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Column Sampling method

Uses more information from the affinity matrix      than Nyström, but 
still ignores non-landmark/non-landmark interaction part        .

M

The approximation to the eigendecomposition is given by the left 
singular vectors of     :C

C = UC⌃CVT
C ) eUM = UC

B22

M

Writing the affinity matrix      by blocks (landmarks first):
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Locally Linear Landmarks (LLL) (Vladymyrov & Carreira-Perpiñán, 2013)  

• Additional assumption: this projection is satisfied in the 
embedding space:                .

• Plugging the projection to the original obj. function:

• Construct the local linear projection matrix    from the input    :Z Y

minX tr
�
XMXT

�
s.t. XXT = I, X = eXZT

)

yn ⇡
PL

l=1 zlneyl, n = 1, . . . , N Y ⇡ eYZT)

X = eXZT

mineX tr
⇣
eXZTMZeXT

⌘
s.t. eXZTZeXT = I

• The solution is given by the reduced generalized eigenproblem:
eX = eig(ZMZT ,ZZT )

• Final embedding are predicted as:               .X = eXZT

• This solution is optimal given the constraint               .X = eXZT



Generalizing approximations
Nyström:

LLL:
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Column Sampling:

Rewrite the solution                   as                     , where     is 
computed optimally (given   ) as:

CTCRewrite using the eigendecomposition of           matrix          :

X = eXZT

eUM = UC = CVC⌃
�1
C = CUCTC⇤

�1/2
CTC

eUM =

✓
UA

B21UA⇤�1
A

◆
=

✓
AUA⇤�1

A

B21UA⇤�1
A

◆
= CUA⇤�1

A

eUM = ZeXT eX

Expand the upper part:

Z

N ⇥ L
}

}

L⇥ L

L⇥ d

eX = eig(ZMZT ,ZZT )
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Generalizing approximations
Nyström: 

1. Solve the smaller          eigendecomposition: 

2. Apply           out-of-sample matrix:

LLL: 
1. Solve the smaller          eigendecomposition:

2. Apply           out-of-sample matrix:

L⇥ L

L⇥ L

eUM = CUA⇤�1
A

A = UA⇤AUT
A

Column Sampling: 
1. Solve the smaller          eigendecomposition: 

2. Apply           out-of-sample matrix:

L⇥ L
CTC = UCTC⇤CTCUCTC

eUM = CUCTC⇤
�1/2
CTC

eUM = ZeXT

N ⇥ L

N ⇥ L

N ⇥ L

eX = eig(ZMZT ,ZZT )



Each approximation consist of the following steps:
• define an out-of-sample matrix          ,
• compute some reduced eigenproblem and a matrix           that 

depends on it,
• final approximation is equal to                  .

Nyström

Column Sampling

LLL computed 
from

Random Projection

eUM = ZQ

QL⇥d

ZN⇥L

QL⇥d

U⇤�1

U⇤�1/2

Y ⇡ eYZ

C

C

qr(MqS)

Generalizing approximations
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ZN⇥L

ZMZT ,ZTZ

ZMZT ,ZTZ

ZTZ, I

A, I

AU = BU⇤Eigenproblem

A,B

U

U



Nyström

Column Sampling

LLL computed 
from

Random Projection

Variational Nyström

eUM = ZQ

QL⇥dZN⇥L

U⇤�1

U

C

qr(MqS)

Generalizing approximations

C U
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ZN⇥L

A, I

ZMZT ,ZZT

AU = BU⇤Eigenproblem

A,B

QL⇥d

Each approximation consist of the following steps:
• define an out-of-sample matrix          ,
• compute some reduced eigenproblem and a matrix           that 

depends on it,
• final approximation is equal to                  .

U

U⇤�1/2

Y ⇡ eYZ

C

ZMZT ,ZTZ

ZTZ, I

ZMZT ,ZTZ
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Variational Nyström

minX tr
�
XMXT

�
s.t. XXT = I, X = eXCT

)

mineX tr
⇣
eXCTMCeXT

⌘
s.t. eXCTCeXT = I

Add this Nyström out-of-sample constraint to the spectral problem:

From LLL perspective:
• replace customary built out-of-sample matrix    with a readily 

available column matrix    ,
• abandon local linearity assumption of the weights    ,
• save computation of    ,
•    is usually sparser than    (due to locality).

Z

Z
Z

C

CZ



13

Variational Nyström
Add this Nyström out-of-sample constraint to the spectral problem:

From Nyström perspective:
• use the same out-of-sample matrix    , but optimize the choice of 

the reduced eigenproblem,
• for fixed     gives better approx. than Nyström or Column 

Sampling (optimal for the out-of-sample kernel    ).
• uses all the elements from     to construct the reduced 

eigenproblem, 
• forgo the interpolating property of Nyström. 

C

C
M

eY

minX tr
�
XMXT

�
s.t. XXT = I, X = eXCT

)

mineX tr
⇣
eXCTMCeXT

⌘
s.t. eXCTCeXT = I
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Subsampling graph Laplacian

• Graph Laplacian kernel is a data dependent:

• Consider      given by normalized graph Laplacian matrix: 

D = diag (
PN

m=1 wnm)

M

wnm = exp(�ky2
n � y2

mk/2�2
)

- Gaussian affinity matrix:
- Degree matrix:

graph Laplacian computed for a subset 
of     input points

           subset of graph Laplacian 
constructed for    points.6=

L⇥ L
N ⇥N

L⇥ L
L N

L / D�1/2WD�1/2

• One of the most widely used kernel (Laplacian Eigenmaps, spectral 
clustering).



Subsampling graph Laplacian

L = N

• Data dependance can be a problem for methods that depend 
on the subsampling:
- Nyström,
- Column Sampling,
- Variational Nyström.

• Not a problem methods for which there is no subsampling:
- LLL,
- Random projection.

D1

C D2 D�1/2 D�1/2ML ! N

Our solution: normalize subsample kernel separately, but in a way that 
interpolates over the landmarks and gives exact solution when           :
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Subsampling graph Laplacian

• For Nyström and Column Sampling:
• we propose different forms for      and     ,
• we evaluate empirically which one is the best.

D1 D2

• For Variational Nyström:
• we showed that       factors out,
• any      leads to the exact solution when           .

D2

L = ND1

D1

C D2 D�1/2 D�1/2M

For the graph Laplacian kernel, the Variational Nyström 
approximation is more general.

16

L ! N
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• Reduce dimensionality of                     digits from MNIST            .   
• Run 5 times for different randomly chosen landmarks from              
to                   .  

L = 11
L = 19 900

N = 20 000 d = 10
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Experiments: Laplacian eigenmaps
• Reduce dimensionality of                     digits from MNIST            .   
• Run 5 times for different randomly chosen landmarks from              
to                   .  

L = 11
L = 19 900

N = 20 000 d = 10



100 101 102 103 104
10−4

10−3

10−2

10−1

100

time

ob
jfu
n

Runtime

Er
ro

r w
ith

 re
sp

ec
t t

o 
th

e 
ex

ac
t

19

Experiments: Laplacian eigenmaps
• Reduce dimensionality of                     digits from MNIST            .   
• Run 5 times for different randomly chosen landmarks from              
to                   .  

L = 11
L = 19 900

N = 20 000 d = 10
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Experiments: Laplacian eigenmaps
• Reduce dimensionality of                     digits from MNIST            .   
• Run 5 times for different randomly chosen landmarks from              
to                   .  

L = 11
L = 19 900

N = 20 000 d = 10

Variational Nyström 
is winning! 

2x as fast as LLL!
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Experiments: Spectral clustering

Original image Exact Spectral clustering, 

Nyström, Variational Nyström, 

t = 512s

t = 25s t = 25s

20x speedup!
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infiniteMNIST embedding

Nyström LLL Variational Nyström

Embedding of                          digits from MNIST. Fix the runtime to       
.           min

L = 16 000 L = 5000 L = 4500

N = 1020 000
t = 10



Conclusions

22

• The Variational Nyström method is the optimal way to 
use the out-of-sample Nyström formula to solve an 
eigenproblem approximately. It is able to achieve a low-
to-medium accuracy solution faster than Nyström and 
other methods. 

• We present a simple unified model of spectral 
clustering approximations, combining many existing 
algorithms such as Nyström, Column Sampling, LLL. 

• We study the role of normalization in subsampling of the 
graph Laplacian kernel and show that Variational 
Nyström is more general for this kernel.
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