

International Conference on Machine Learning

The Variational Nyström Method for Large-Scale Spectral Problems

Max Vladymyrov Google Inc.

Miguel Carreira-Perpiñán EECS, UC Merced

June 20, 2016

Graph based dimensionality reduction methods

1. Convert data points to a $N \times N$ affinity matrix M. Given high-dimensional data points $\mathbf{Y}_{D\times N} = (\mathbf{y}_1, \dots, \mathbf{y}_N)$. 2. Find low-dimensional coordinates $\mathbf{X}_{d\times N} = (\mathbf{x}_1, \dots, \mathbf{x}_N)$, so that their similarity is as close as possible to $\mathbf M.$

Spectral methods

• Consider a spectral problem:

 $\min_{\mathbf{X}} {\rm tr}\left(\mathbf{X}\mathbf{M}\mathbf{X}^T\right) \quad {\rm s.t.} \quad \mathbf{X}\mathbf{X}^T = \mathbf{I},$

- \blacktriangleright $\mathbf{M}_{N\times N}$: symmetric psd affinity matrix.
- Examples:
	- Laplacian eigenmaps, Mis a graph Laplacian.
	- I ISOMAP, M is given by a matrix of shortest distances.
	- ‣ Kernel PCA, MDS, Locally Linear Embedding (LLE), etc.
- Solution is unique and can be found in closed form from the eigenvectors of \mathbf{M} : $\mathbf{X} = \mathbf{U}_\mathbf{M}^T$.

With large N , solving the eigenproblem is infeasible even if $\bf M$ is sparse.

Learning with landmarks

Goal is find a fast, approximate solution for the embedding $\mathbf X$ using only the subset of the original points from Y .

Nyström method

Writing the affinity matrix \mathbf{M} by blocks (landmarks first):

The approximation to the eigendecomposition is equal to:

$$
\widetilde{\mathbf{U}}_{\mathbf{M}}=\begin{pmatrix}\mathbf{U}_{\mathbf{A}} \\ \mathbf{B}_{21}\mathbf{U}_{\mathbf{A}}\mathbf{\Lambda}_{\mathbf{A}}^{-1}\end{pmatrix}
$$

Essentially, an out-of-sample formula:

1. Solve the eigenproblem for a subset of points.

2. Predict the rest of the points through the interpolation formula.

Column Sampling method

Writing the affinity matrix \bf{M} by blocks (landmarks first):

The approximation to the eigendecomposition is given by the left singular vectors of C :

$$
C = U_C \Sigma_C V_C^T \Rightarrow \widetilde{U}_M = U_C
$$

Uses more information from the affinity matrix $\mathbf M$ than Nyström, but still ignores non-landmark/non-landmark interaction part \mathbf{B}_{22} .

Locally Linear Landmarks (LLL) (Vladymyrov & Carreira-Perpiñán, 2013)

- Construct the local linear projection matrix Z from the input Y : $\mathbf{y}_n \approx \sum_{l=1}^L z_{ln} \widetilde{\mathbf{y}}_l, n = 1, \ldots, N \quad \Rightarrow \quad \mathbf{Y} \approx \widetilde{\mathbf{Y}} \mathbf{Z}^T$
- Additional assumption: this projection is satisfied in the embedding space: $X = \widetilde{X}Z^T$.
- Plugging the projection to the original obj. function: $\min_{\mathbf{X}} \text{tr}\left(\mathbf{X} \mathbf{M} \mathbf{X}^T\right) \quad \text{s.t.} \quad \mathbf{X} \mathbf{X}^T = \mathbf{I}, \ \mathbf{X} = \widetilde{\mathbf{X}} \mathbf{Z}^T$ $\overline{\Downarrow}$ $\min_{\widetilde{\mathbf{X}}} \text{tr} \left(\widetilde{\mathbf{X}} \mathbf{Z}^T \mathbf{M} \mathbf{Z} \widetilde{\mathbf{X}}^T \right)$ \setminus s.t. $\mathbf{XZ}^T \mathbf{Z} \mathbf{X}^T = \mathbf{I}$
- The solution is given by the reduced generalized eigenproblem: $\widetilde{\mathbf{X}} = \text{eig}(\mathbf{Z}\mathbf{M}\mathbf{Z}^T,\mathbf{Z}\mathbf{Z}^T)$
- Final embedding are predicted as: $X = \tilde{X}Z^{T}$.
- This solution is optimal given the constraint $\mathbf{X} = \widetilde{\mathbf{X}} \mathbf{Z}^T$.

Nyström:

Expand the upper part:

$$
\widetilde{\mathbf{U}}_{\mathbf{M}} = \begin{pmatrix} \mathbf{U}_{\mathbf{A}} \\ \mathbf{B}_{21} \mathbf{U}_{\mathbf{A}} \Lambda_{\mathbf{A}}^{-1} \end{pmatrix} = \begin{pmatrix} \mathbf{A} \mathbf{U}_{\mathbf{A}} \Lambda_{\mathbf{A}}^{-1} \\ \mathbf{B}_{21} \mathbf{U}_{\mathbf{A}} \Lambda_{\mathbf{A}}^{-1} \end{pmatrix} = \mathbf{C} \mathbf{U}_{\mathbf{A}} \Lambda_{\mathbf{A}}^{-1}
$$
\n
$$
L \times d
$$

Column Sampling:

Rewrite using the eigendecomposition of $L \times L$ matrix $\textbf{C}^T\textbf{C}$: $\widetilde{\mathbf{U}}_{\mathbf{M}} = \mathbf{U}_{\mathbf{C}} = \mathbf{C} \mathbf{V}_{\mathbf{C}} \mathbf{\Sigma}_{\mathbf{C}}^{-1} = \mathbf{C} \mathbf{U}_{\mathbf{C}^T \mathbf{C}} \mathbf{\Lambda}_{\mathbf{C}^T \mathbf{C}}^{-1/2}$

LLL:

Rewrite the solution $\mathbf{X} = \mathbf{X}\mathbf{Z}^T$ as $\mathbf{U}_{\mathbf{M}} = \mathbf{Z}\mathbf{X}^T$, where \mathbf{X} is computed optimally (given \mathbf{Z}) as: $\mathbf{X} = \widetilde{\mathbf{X}}\mathbf{Z}^T$ as $\widetilde{\mathbf{U}}_{\mathbf{M}} = \mathbf{Z}\widetilde{\mathbf{X}}^T$, where $\widetilde{\mathbf{X}}$

$$
\widetilde{\mathbf{X}} = \text{eig}(\mathbf{Z} \mathbf{M} \mathbf{Z}^T, \mathbf{Z} \mathbf{Z}^T)
$$

Nyström:

1. Solve the smaller $L \times L$ eigendecomposition: 2. Apply $N \times L$ out-of-sample matrix : ⇥ *L* $\widetilde{\mathbf{U}}_{\mathbf{M}} = \mathbf{C} \mathbf{U}_{\mathbf{A}} \mathbf{\Lambda}_{\mathbf{A}}^{-1}$ A $\mathbf{A} = \mathbf{U}_{\mathbf{A}} \mathbf{\Lambda}_{\mathbf{A}} \mathbf{U}_{\mathbf{A}}^T$ **Column Sampling:** 1. Solve the smaller $L \times L$ eigendecomposition: 2. Apply $N \times L$ out-of-sample matrix : ⇥ *L* $\mathbf{C}^T\mathbf{C} = \mathbf{U}_{\mathbf{C}^T\mathbf{C}}\mathbf{\Lambda}_{\mathbf{C}^T\mathbf{C}}\mathbf{U}_{\mathbf{C}^T\mathbf{C}}$ $\widetilde{\mathbf{U}}_{\mathbf{M}} = \mathbf{C} \mathbf{U_{C}}_{T\mathbf{C}} \mathbf{\Lambda_{C}}_{TC}^{-1/2}$ $\mathbf{C}^T\mathbf{C}$ ⇥ *L* ⇥ *L*

LLL:

1. Solve the smaller $L \times L$ eigendecomposition: 2. Apply $N \times L$ out-of-sample matrix : ⇥ *L* $\widetilde{\mathbf{U}}_{\mathbf{M}} = \mathbf{Z}\widetilde{\mathbf{X}}^T$ ⇥ *L* $\widetilde{\mathbf{X}} = \text{eig}(\mathbf{Z}\mathbf{M}\mathbf{Z}^T,\mathbf{Z}\mathbf{Z}^T)$

Each approximation consist of the following steps:

- define an out-of-sample matrix $\mathbf{Z}_{N\times L}$
- compute some reduced eigenproblem and a matrix $\mathbf{Q}_{L\times d}$ that depends on it,
- final approximation is equal to $\mathbf{U}_{\mathbf{M}} = \mathbf{Z} \mathbf{Q}$.

Each approximation consist of the following steps:

- define an out-of-sample matrix $\mathbf{Z}_{N\times L}$
- compute some reduced eigenproblem and a matrix $\mathbf{Q}_{L\times d}$ that depends on it,
- final approximation is equal to $\mathbf{U}_{\mathbf{M}} = \mathbf{Z} \mathbf{Q}$.

Variational Nyström

$\min_{\mathbf{X}} \text{tr}\left(\mathbf{X} \mathbf{M} \mathbf{X}^T\right) \quad \text{s.t.} \quad \mathbf{X} \mathbf{X}^T = \mathbf{I}, \ \mathbf{X} = \widetilde{\mathbf{X}} \mathbf{C}^T$ Add this Nyström out-of-sample constraint to the spectral problem:

$$
\min_{\widetilde{\mathbf{X}}} \operatorname{tr} \left(\widetilde{\mathbf{X}} \mathbf{C}^T \mathbf{M} \mathbf{C} \widetilde{\mathbf{X}}^T \right) \quad \text{s.t.} \quad \widetilde{\mathbf{X}} \mathbf{C}^T \mathbf{C} \widetilde{\mathbf{X}}^T = \mathbf{I}
$$

 \bigcup

From LLL perspective:

- replace customary built out-of-sample matrix Z with a readily available column matrix $\mathbf C$,
- abandon local linearity assumption of the weights $\mathbf Z$,
- save computation of $\mathbf Z$,
- $\mathbf Z$ is usually sparser than $\mathbf C$ (due to locality).

Variational Nyström

Add this Nyström out-of-sample constraint to the spectral problem: $\min_{\mathbf{X}} \text{tr}\left(\mathbf{X} \mathbf{M} \mathbf{X}^T\right) \quad \text{s.t.} \quad \mathbf{X} \mathbf{X}^T = \mathbf{I}, \ \mathbf{X} = \widetilde{\mathbf{X}} \mathbf{C}^T$

$$
\min_{\widetilde{\mathbf{X}}} \operatorname{tr} \left(\widetilde{\mathbf{X}} \mathbf{C}^T \mathbf{M} \mathbf{C} \widetilde{\mathbf{X}}^T \right) \quad \text{s.t.} \quad \widetilde{\mathbf{X}} \mathbf{C}^T \mathbf{C} \widetilde{\mathbf{X}}^T = \mathbf{I}
$$

 \bigcup

From Nyström perspective:

- use the same out-of-sample matrix C , but optimize the choice of the reduced eigenproblem,
- for fixed $\widetilde{\mathbf{Y}}$ gives better approx. than Nyström or Column Column Sampling (*optimal* for the out-of-sample kernel $\mathbf C$).
- \cdot uses all the elements from $\mathbf M$ to construct the reduced eigenproblem,
- forgo the interpolating property of Nyström.

Subsampling graph Laplacian

- Consider M given by normalized graph Laplacian matrix: $\rm L \propto D^{-1/2}WD^{-1/2}$
	- Gaussian affinity matrix: $w_{nm} = \exp(-\|\mathbf{y}_n^2 \mathbf{y}_m^2\|/2\sigma^2)$
	- $\mathbf{D} = \text{diag}\left(\sum_{m=1}^{N} w_{nm}\right)$ Degree matrix:
- One of the most widely used kernel (Laplacian Eigenmaps, spectral clustering).
- Graph Laplacian kernel is a *data dependent*:

graph Laplacian computed for a subset of L input points L input points $\overline{}$ $\overline{}$ constructed for N

 $L \times L$

 $L \times L$ subset of graph Laplacian constructed for N points.

$$
N \times N
$$

Subsampling graph Laplacian

- Data dependance can be a problem for methods that depend on the subsampling:
	- Nyström,
	- Column Sampling,
	- Variational Nyström.
- Not a problem methods for which there is no subsampling:
	- LLL,
	- Random projection.

interpolates over the landmarks and gives exact solution when $L=N$: Our solution: normalize subsample kernel separately, but in a way that

Subsampling graph Laplacian

• For Nyström and Column Sampling:

- we propose different forms for \mathbf{D}_1 and \mathbf{D}_2 ,
- we evaluate empirically which one is the best.
- For Variational Nyström:
	- we showed that \mathbf{D}_2 factors out,
	- any D_1 leads to the exact solution when $L = N$.

For the graph Laplacian kernel, the Variational Nyström approximation is more general.

- Reduce dimensionality of $N = 20\,000$ digits from MNIST $d = 10$.
- \cdot Run 5 times for different randomly chosen landmarks from $L=11$ to $L=19\,900$.

- Reduce dimensionality of $N = 20\,000$ digits from MNIST $d = 10$.
- \cdot Run 5 times for different randomly chosen landmarks from $L=11$ to $L=19\,900$.

- Reduce dimensionality of $N = 20\,000$ digits from MNIST $d = 10$.
- \cdot Run 5 times for different randomly chosen landmarks from $L=11$ to $L=19\,900$.

- Reduce dimensionality of $N = 20\,000$ digits from MNIST $d = 10$.
- \cdot Run 5 times for different randomly chosen landmarks from $L=11$ to $L=19\,900$.

Experiments: Spectral clustering

Original image Exact Spectral clustering, *t* = 512*s*

 N yström, $t = 25s$ *Variational Nyström,* $t = 25s$ 20x speedup!

infiniteMNIST embedding

Embedding of $N = 1020000$ digits from MNIST. Fix the runtime to $t=10\,$ min

Conclusions

- The Variational Nyström method is the optimal way to use the out-of-sample Nyström formula to solve an eigenproblem approximately. It is able to achieve a lowto-medium accuracy solution faster than Nyström and other methods.
- We present a simple unified model of spectral clustering approximations, combining many existing algorithms such as Nyström, Column Sampling, LLL.
- We study the role of normalization in subsampling of the graph Laplacian kernel and show that Variational Nyström is more general for this kernel.

Poster #64 tomorrow (10am-1pm)

Partially supported by NSF award IIS-1423515