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1 Abstract
Spectral methods for dimensionality reduction and clus-
tering require solving an eigenproblem defined by a
sparse affinity matrix. When this matrix is large, one
seeks an approximate solution. The standard way to
do this is the Nyström method, which first solves a
small eigenproblem considering only a subset of land-
mark points, and then applies an out-of-sample for-
mula to extrapolate the solution to the entire dataset.
We show that by constraining the original problem to
satisfy the Nyström formula, we obtain an approxima-
tion that is computationally simple and efficient, but
achieves a lower approximation error using fewer land-
marks and less runtime. We also study the role of nor-
malization in the computational cost and quality of the
resulting solution.
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2 Spectral methods

Consider a spectral problem:

minX tr
(
XMXT

)
s.t. XXT = I (1)

where

•M is an N×N symmetric matrix (usually, a graph Laplacian)
constructed on a dataset Y = (y1, . . . ,yN) of D ×N ,

•X = (x1, . . . ,xN) are coordinates in Rd for the N data points
(embedding), d < D.

This minimization problem occurs in Laplacian Eigenmaps,
ISOMAP, Locally Linear Embedding, Spectral Clustering, Ker-
nel PCA etc.
The solution is given by the d trailing eigenvectors UM of M,
which is costly to compute when N is large. Our goal is to
solve problems of the type (1) approximately.

3 Landmark approximation methods

Select L landmarks Ỹ = (ỹ1, . . . , ỹL) from Y (e.g. randomly).

W.l.o.g. rearrange M with landmarks first: M =

(
A BT

21

B21 B22

)

and C =

(
A

B21

)
are the columns of M that correspond to Ỹ.

Ways to approximate the computation of (1):

1. Nyström method
Essentially, an out-of-sample formula:

1. Solve the eigenproblem for Ỹ.

2. Predict the rest of the points with an interpolation formula.

ŨM =

(
UA

B21UAΛ
−1
A

)
= CUAΛ

−1
A .

Problem: ignores non-landmark points for the initial predic-
tion → interpolation over the bad solution is bad.

2. Column Sampling
Approximation is given by the left singular vectors of C:
C = UCΣCV

T
C ⇒ ŨM = UC

Rewriting using the SVD of CTC we get ŨM = CUCTCΛ
−1/2

CTC
.

Problem: uses more data than Nyström (columns of M), but
still ignores non-landmark/non-landmark interactions B22 for
prediction.

3. Locally Linear Landmarks
1. Construct the local linear projection matrix Z from Y:

yn ≈

L∑

l=1

zlnỹl, n = 1, . . . , N ⇒ Y ≈ ỸZ (2)

2. Assume that projection is also satisfied in the embedding
space: X = X̃Z

3. Adding this constraint to (1) results in a reduced L×L eigen-
problem:

min
X̃
tr
(
X̃M̃X̃T

)
s.t. X̃ZZTX̃T = I

with reduced affinities M̃ = ZMZT .

4. Reconstruct final embedding using X = X̃Z

Final eigenvector approximation: ŨM = ZX̃.
Problem: Local linearly assumption may not be always true.
Strong dependance on features Y.

4. Random Projection method
1. Use a random matrix SN×L to form a low-dimensional sam-

ple matrix MS = MS,

2. Compute SVD of the projection of M onto QR decomposi-
tion of MS,

3. Project the results back to the original space.

4 Generalizing approximations

All the methods above can be generalized as follows:

1. Define an out-of-sample matrix Z.

2. Compute a reduced eigenproblem and a matrix QL×d

that depends on it.

3. Final approximation is equal to UM = ZQ

Algorithm ZN×L QL×d

Eigenproblem

AU = BUΛ

A, B

Nyström C UΛ−1 A, I
Column sampling C UΛ−1

2 ZTZ, I
Random Projection qr(MqS) U ZTMZ, I
LLL eq. (2) U ZTMZ, ZTZ

Variational Nyström C U ZTMZ, ZTZ

5 Variational Nyström

Since the embedding is defined by the Nyström out-of-
sample formula X = X̃CT , we add this as a constraint to
the spectral problem (1):

minX tr
(
XMXT

)
s.t. XXT = I, X = X̃CT

Which result in a reduced eigenproblem:

min
X̃
tr
(
X̃CTMCX̃T

)
s.t. X̃CTCX̃T = I

From LLL perspective:

• replace customary built out-of-sample matrix Z with a
readily available column matrix C,

•abandon local linearity assumption of the weights Z

and dependance on the features Y,

• save computation of Z.

From Nyström perspective:

• for fixed Ỹ gives better approx. than Nyström or Col-
umn Sampling (optimal for the out-of-sample kernel C).

•use the same out-of-sample matrix C, but optimize the
choice of the reduced eigenproblem,

•use all the elements from M to construct the reduced
eigenproblem,

• forgo the interpolating property of Nyström.

6 Subsampling Graph Laplacians

Consider M given by graph Laplacian:

L = D−1/2(D−W)D−1/2,

(as in Laplacian Eigenmaps, spectral clustring etc.)
where

wnm = exp(−‖y2
n − y2

m‖/2σ
2) D = diag

(
N∑

m=1

wnm

)

•L is a data dependent kernel: Graph Laplacian
computed for a subset of L input points is not
equal to the L×L subset of graph Laplacian con-
structed for N points.

•This can be problematic for methods that depend
on subsampling, such as Nyström and Variational
Nyström. Not a problem for LLL, since there is no
subsampling involved.

•Our solution: normalize out-of-sample kernel sep-
arately, but in a way that (1) interpolates over
the landmarks and (2) gives exact solution when
L = N :

•We show that for the Variational Nyström final
normalization is more general and has much sim-
pler form than for Nyström method.

7 Experiments

Medium size experiment. Reduce dimensionality of 20 000 random points from MNIST to d = 10.
Error/runtime tradeoff of different methods.
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Figure/ground image segmentation.
Original image Exact SC, 512 s Nyström, 25 s VN, 25 s

Embedding of the infiniteMNIST. 1 020 000 points. Fix the runtime to 10 min.
Nyström, L = 16 000 CS, L = 15 000 LLL, L = 5 000 VN, L = 4 500
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8 Conclusions

1. The Variational Nyström method is the optimal
way to use the out-of-sample Nyström formula to
solve an eigenproblem approximately. It is able to
achieve a low-to-medium accuracy solution faster
than Nyström and other methods.

2. We present a simple unified model of spectral
approximations, combining many existing algo-
rithms such as Nyström, Column Sampling, LLL.

3. We study the role of normalization in subsam-
pling of the graph Laplacian kernel.


