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Abstract Generalizing approximations IEI Subsampling Graph Laplacians

Spectral methods for dimensionality reduction and clus- Al the methods above can be generalized as follows: Consider M given by graph Laplacian:

tering require solving an eigenproblem defined by @ 1. pefine an out-of-sample mairix Z. L - DD — WD
sparse affinity matrix. When this matrix is large, one ’

2. Compute a reduced eigenproblem and a matrix Q.4

seeks an approximate solution. The standard way to that depends on it. (aﬁ in Laplacian Eigenmaps, spectral clustring etc.)
. . un . . W ere
do this is the Nystrom method, which first solves a 3 Fing| approximation is equal to Uy = ZQ N
small eigenproblem considering only a subset of land- _ W = exp(—[ly2 — y2[/20%) D = diag Zw
mark points, and then applies an out-of-sample for- Algorithm . o Efgnprl‘;%im " noom L
- : : N xL Lxd = B
VTVU|a ;O e)f[tr:a,?oblate thet Splytlo?hto thle.enltlre db?tasett' A, B e L iIs a data dependent kernel: Graph Laplacian
€ show that by constraining the original probiem 1o - — computed for a subset of L input points is not
tion that is computationally simple and efficient, but Column sampling C UA: Z'7Z,1 structed for N points.
achieves a lower approximation error using fewer land- Random Projection qr(M‘S) U Z'MZ, I e This can be problematic for methods that depend
marks and less runtime. We also study the role of nor- LLL eq- @ U Z'MZ,7'7Z on subsampling, such as Nystrém and Variational
malization in the computational cost and quality of the Variational Nystrom  C U ZT™MZ, 777 Nystrom. Not a problem for LLL, since there is no
resulting solution. subsampling involved.
e Our solution: normalize out-of-sample kernel sep-
. a . arately, but in a way that (1) interpolates over
Spectral methods Variational Nystrom the landmarks and (2) gives exact solution when
Consider a spectral problem: Since the embedding is defined by the Nystrom out-of- L= o o
| . . 1 sample formula X = XC7, we add this as a constraint to e We show that for the Variational Nystrom final
minx tr (XMX') st XX' =1 (1) the spectral problem (1): normalization is more general and has much sim-
where - pler form than for Nystrom method.
_ | _ _ minx tr (XMX’) st XX'=I, X=XC’
e M is an N x N symmetric matrix (usually, a graph Laplacian) | | |
constructed on a dataset Y = (y;,...,yw~) of D x N, Which result in a reduced eigenproblem: E .
eX = (x,...,xy) are coordinates in R? for the N data points ming tr (XCTMCXT) st. XCTCeXT =1 Conclusions

(embedding), d < D.

o minimisat - S From LLL perspective: 1. The Variational Nystrdém method is the optimal
(SOMAP. Locally Linoar Embedeing. Spactral Clustaring, Ker. *feplace customary buit out-of-sample matrix z with a  Way o use the out-of-sample Nysirm formia to
nel PCA etc. readily available column matrix C, soh{e an ellgentprobledm apprommately.I |’E[.IS afbletto
The solution is given by the d trailing eigenvectors Uy, of M, ~ e®abandon local linearity assumption of the weights Z ’?hcar;el\\/le;rgx-;r;gqgtr::mr?gﬁ]ugggy solulion taster
which is costly to compute when N is large. Our goal is to and dependance on the features Y, y . n '
solve problems of the type (1) approximately. e save computation of Z. 2. We present a simple unified model of spectral

approximations, combining many existing algo-

3 From .I\Iystr:c'zm Perspeotive: ) rithms such as Nystrom, Column Sampling, LLL.
Landmark approximation methods o for fixed Y gives better approx. than Nystrom or Col- 3.We study the role of normalization in subsam-

umn Sampling (optimal for the out-of-sample kernel C). oling of the graph Laplacian kernel.
Select L landmarks Y = (y4,....y;) from Y (e.g. randomly). . use.the same out-of-sample matrix C, but optimize the
Wi M with landmarks first: M A B choice of the reduced eigenproblem,
o9 rea;range I 1AnaImares fst- =\ By By e use all the elements from M to construct the reduced IC M L @ NYC
and C = ( > are the columns of M that correspond to Y. eigenproblem, | | |
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e forgo the interpolating property of Nystrom.

Ways to approximate the computation of (1)):
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1. Nystrom method _
Essentially, an out-of-sample formula: Experiments
1. Solve the eigenproblem for Y. Medium size experiment. Reduce dimensionality of 20 000 random points from MNIST to d = 10.
2. Predict the rest of the points with an interpolation formula. Error/runtime tradeoff of different methods.
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Problem: ignores non-landmark points for the initial predic-
tion — interpolation over the bad solution is bad.

2. Column Sampling
Approximation is given by the left singular vectors of C:

Error wrt exact LE
Error wrt exact LE |

C = Uczcv(Tj = Unpm = Uc 10 o :{P, qg=1 10

Rewriting using the SVD of C"C we get Uy = CUcrcA /L. B 3:3 q=2 |

Problem: uses more data than Nystrom (columns of M), but 10— --’.9-':23- e 10 " —

still ignores non-landmark/non-landmark interactions B, for 10 10 10

prediction. # of landmarks L # of landmarks L Runtime
3. Locally Linear Landmarks Figure/ground image segmentation.

| - | Original image Exact SC, 512 s Nystrom, 25 s VN, 25 s
1. Construct the local linear projection matrix Z from Y _

L
Yo~ ¥ amynn=1,...N = Y~YZ (2)
[=1

2. Assume thajtvpfojection is also satisfied in the embedding
space: X = XZ

3. Adding this constraint to (1) results in a reduced L x L eigen-
problem:

N N AN

ming tr (XMX?) st XZZ'X" -1 | o _— | |
| N Embedding of the infiniteMNIST. 1020000 points. Fix the runtime to 10 min.
with reduced affinities M = ZMZ". Nystrém, L = 16 000 CS, L = 15000 LLL, L = 5000 VN, L = 4500

4. Reconstruct final embedding using X = XZ

Final eigenvector approximation: Uy, = ZX.
Problem: Local linearly assumption may not be always true.
Strong dependance on features Y.

4. Random Projection method Sk
1. Use a random matrix Sy to form a low-dimensional sam- v \
ple matrix Mg = MS,

2. Compute SVD of the projection of M onto QR decomposi-
tion of Mg,

3. Project the results back to the original space.
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