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Abstract

Gaussian affinities are commonly used in
graph-based methods such as spectral clus-
tering or nonlinear embedding. Hinton and
Roweis (2003) introduced a way to set the
scale individually for each point so that it
has a distribution over neighbors with a de-
sired perplexity, or effective number of neigh-
bors. This gives very good affinities that
adapt locally to the data but are harder to
compute. We study the mathematical prop-
erties of these “entropic affinities” and show
that they implicitly define a continuously dif-
ferentiable function in the input space and
give bounds for it. We then devise a fast
algorithm to compute the widths and affini-
ties, based on robustified, quickly convergent
root-finding methods combined with a tree-
or density-based initialization scheme that
exploits the slowly-varying behavior of this
function. This algorithm is nearly optimal
and much more accurate and fast than the ex-
isting bisection-based approach, particularly
with large datasets, as we show with image
and text data.

Many machine learning algorithms rely on the
choice of meta-parameters that govern their per-
formance. These parameters depend on the data
and good values are often hard to find. One such
meta-parameter is the bandwidth σ that is used
in the construction of affinities in many machine
learning problems. These include dimensionality
reduction methods such as LLE (Roweis & Saul,
2000), Laplacian eigenmaps (Belkin & Niyogi, 2003),
ISOMAP (de Silva & Tenenbaum, 2003), SNE
(Hinton & Roweis, 2003), and the elastic embedding
(Carreira-Perpiñán, 2010); clustering methods such
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as spectral clustering (Ng et al., 2002) and mean-shift
algorithms (Carreira-Perpiñán, 2006); semi-supervised
learning (Zhou et al., 2004; Belkin et al., 2006); and
many others. In some of those algorithms σ is the
only parameter to tune and a user has to try several
values until the desired quality of the algorithm is
achieved. When the dataset is large, such a process
is not interactive and can lead to frustration and
ultimately to the user refusing to use a potentially
good algorithm. On top of that, the best results of the
algorithm may not be achieved for a single value of σ
for all the points, but rather for a separate bandwidth
for every datapoint, in which case the existence of
automatic procedure is vital.

In their spectral clustering algorithm, Ng et al. (2002)
suggest to set σ to the value giving least distorted clus-
ters, but this requires running the algorithm, which is
expensive. In a supervised setting, Er et al. (2002) se-
lect the bandwidth per cluster of data as the one that
captures the variation between points in each clus-
ter, but minimizes the overlapping of nearest neigh-
bors in different classes. The method requires tuning
some parameters that depend on the mean and vari-
ance of the clusters. Bchir & Frigui (2010) estimate
one σ per cluster in an unsupervised manner using a
fuzzy logic framework. The objective function of this
method maximizes the scaling parameter per cluster
up until the clusters start to overlap. There also ex-
ist classic rules of thumb, such as setting σ separately
for each point to the distance dk to the kth nearest
neighbor of that point, where k is a user parameter
(set to 7 in Zelnik-Manor & Perona, 2005). This has
the odd behavior that σ would change proportionally
to changes in dk, but would ignore any changes to the
rest of the distances, no matter how large, as long as
dk remained the kth distance; or else it would change
discontinuously.

In this paper, we study a previously proposed way to
set per-point bandwidths that takes into account the
whole distribution of distances and is a continuous,
differentiable function of them. For a given point x ∈
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Figure 1. Top plots: embeddings of COIL dataset with the
elastic embedding algorithm, using (from left to right): en-
tropic affinities with perplexity K = 20; unique σ = 9
obtained by averaging σs with perplexity K = 20; σn =
distance to 7th nearest neighbor. Bottom plots: value of
the perplexity K for each point xn of the dataset. The
color corresponds to different COIL manifolds.
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where dn = ‖x− xn‖. We focus on the case where
K(‖(x− xn)/σ‖2) is the Gaussian kernel. We set σ in-
dividually for point x to a value such that the entropy
of the distribution p(x;σ), considered as a function of
σ for fixed d1, . . . , dN , equals logK, where K is a user-
set perplexity parameter. The perplexity, widely used
in natural language processing (Manning & Schütze,
1999), has an intuitive interpretation. A perplexity of
K in a distribution p over N neighbors means p pro-
vides the same surprise as if we were to choose among
K equiprobable neighbors. Having set σ in this way,
the resulting value pn(x;σ) can be used as an affinity
between x and xn. We call them entropic affinities.

These affinities were introduced by Hinton & Roweis
(2003) as a better way to define the local scaling of the
Gaussian distribution in their stochastic neighbor em-
bedding (SNE) method. Their definition of p(x;σ) was
particularized to x being one of the data points, but
our generalization simplifies things later. The affinity
pnm between points xn and xm is then pn(xm;σ). If we
consider an affinity matrix W with entries K(xn,xm)
and degree matrix D = diag (

∑N
n=1 wnm), then p de-

fines the random-walk matrix P = D−1W, where each
row is our distribution p(xn;σ). Thus, the entropic
affinities seek a matrix P(σ1, . . . , σN ) as a function
of the kernel widths for each data point so that each
row of P has perplexity K. To compute each σn,
Hinton & Roweis (2003) performed a search to find a

bracket for the solution, initialized at [0, 1], and then
used bisections. This becomes noticeably slow with
large datasets.

Fig. 1 illustrates how the entropic affinities indeed im-
prove over using a single σ or simple rule-of-thumb
adaptive σn (the distance to the 7th nearest neigh-
bor; Zelnik-Manor & Perona, 2005). We applied a
nonlinear dimensionality reduction algorithm, the elas-
tic embedding (Carreira-Perpiñán, 2010), to the COIL
dataset (rotation sequences of 10 physical objects ev-
ery 5 degrees, each a grayscale image of 128 × 128
pixels, total N = 720 points in 16 384 dimensions;
Nene et al., 1996). The left plot clearly shows the sep-
aration between the manifolds as well as the sequential
structure of each manifold. The embedding resulting
from a single σ or σn from the 7th neighbor does not
show such a structure. The bottom plots show the σ
values in the latter two cases result in a wide range of
perplexity values.

This paper improves our understanding of entropic
affinities and their numerical computation. Section 1
proves useful properties, in particular that the function
σ(x) is well defined and continuously differentiable,
and give simple bounds for it. Based on this, section 2
describes fast, scalable algorithms that compute σ and
the entropic affinities themselves in very few iterations
to almost machine precision, by processing points in a
certain order. Section 3 shows experimental results
with image and text datasets.

1. Some properties of entropic affinities

The entropy of the distribution (1) is defined as

H(x, σ) = −
∑N

n=1 pn(x, σ) log(pn(x, σ))

= −∑N
n=1 pn(x, σ) logKn + log

∑

n Kn. (2)

In particular, for the Gaussian kernel it becomes

H(x, β) = β

N
∑

n=1

pn(x, β)d
2
n + log

N
∑

n=1

exp(−d2nβ) (3)

where we will work with the precision parameter β =
1/2σ2. We can express (3) and its derivatives wrt β
using the partition function Z(β) =

∑N
n=1 exp(−d2nβ)

and moments mk(β) =
∑N

n=1 pnd
2k
n as follows:

H(x, β) = βm1 + logZ H ′

β(x, β) = −β(m2 −m2
1)

H ′′

β (x, β) = β(m3 − 3m2m1 + 2m3
1) +m2

1 −m2. (4)

mk can be expressed as a function of Z and its deriva-
tives using the following recursive definition:

m1 = − 1
Z

∂Z
∂β

; mk+1 = m1mk − ∂mk

∂β
, for k > 1. (5)
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We now consider the problem of searching for σ (or
β), which is implicit given the perplexity K:

F (x, β,K) := H(x, β)− logK = 0. (6)

This is a 1D root-finding problem or an inversion prob-
lem if H(x, β) is invertible over β.

The first derivative of F (x, β,K) is equal to the one
from H(x, β) and is always negative for β > 0 given
that the neighboring points are not equidistant from
x. This means that (3) is a monotonically decreasing
function of β that decreases from logN for β = 0 to 0
for β → ∞. Thus, the problem (6) is well defined for
any value of β > 0 and has a unique root β(x) for any
K ∈ (0, N) in the same interval.

Next, notice thatH(x, β) is continuously differentiable
in an open neighborhood of (x0, β0) for some fixed
β0 > 0 and x0 ∈ R

D and that H ′

β(x, β0) 6= 0. Thus,
we can apply the implicit function theorem to show
the existence of a uniquely defined local continuously
differentiable function β(x) that satisfies β(x0) = β0.
Moreover, sinceH(x, β) is invertible, the function β(x)
is also a global function defined for all x. The same
argument can be applied to F (x, β,K), leading to the
existence of a continuously differentiable global func-
tion β(x,K) defined for allK ∈ (0, logN) and x ∈ R

D.

Finally, we give bounds [βL, βU ] for β(x,K), i.e., sat-
isfying H(x, βL) > logK > H(x, βU ) for every x and
K, that are easy to compute and reasonably tight. As-
sume w.l.o.g. the squared distances are sorted increas-
ingly: d21 < d22 < · · · < d2N . Define ∆2

N = d2N − d21 and
∆2

2 = d2n − d21. (If some of the distances are equal, the
results hold taking ∆2

2 as the first nonzero d2n − d21.)

Theorem 1.1. The following give lower and upper
bounds for the root of (6):

βL = max





N log N
K

(N − 1)∆2
N

,

√

log N
K

d4N − d41



 (7)

βU =
1

∆2
2

log
( p1
1− p1

(N − 1)
)

(8)

where p1 is the unique solution in the interval [3/4, 1]
of the equation:

2(1− p1) log
N

2(1− p1)
= log

(

min(
√
2N,K)

)

. (9)

The proof is given in the supplementary material. Sol-
ving (9) can be done with Newton’s method and needs
be done only once for all the points in the dataset,
since p1 depends only on K and N . The computation
of the bounds is thus O(1) for each data point, since
they only need d1, d2 and dN . Tighter bounds can
be obtained by using all distances d1, . . . , dN , but at a
cost O(N), which defeats the purpose.

Rescaling the data (or the distances) rescales σ as well,
i.e., H−1(K;αd) = αH(K; d) for any α > 0. This
suggests rescaling the data should rescale the bounds
correspondingly, which indeed happens for our bounds.

Our results carry over, suitably modified, to some vari-
ations of our problem. The formulation (1) implies
pnn 6= 0. It is also possible to set self-affinities pnn to 0
(as is sometimes done) by defining p over the distances
d2 to dN instead. One can also use sparse affinities if
defining p(x;σ) on the k nearest neighbors of x rather
than all N points. This means setting N = k with
points sorted in increasing distance to x.

2. Computation of entropic affinities

To compute the entropic affinities we need to solve
the root-finding problem (6) as efficiently as possi-
ble for every point in the dataset. There exist many
one-dimensional root-finding algorithms with differ-
ent convergence orders. Some of the most popu-
lar derivative-free methods are the bisection method,
Brent’s method (1973) and Ridders’ method (1979).
These methods have universal convergence guaran-
tees and take as an input an interval bracketing the
root, which they iteratively shrink. Derivative-based
methods such as Newton’s, Halley’s and Euler’s meth-
ods (Traub, 1982) construct a sequence of iterates in-
stead. The next iterate is found based on the value of
the function and its derivatives at the current iterate.
These methods usually do not have global convergence
guarantees unless the function has some very specific
form (Melman, 1997). However, their convergence or-
der is usually higher than that from derivative-free
methods using the same amount of information. No-
tice that although the cost of (6) as well as its deriva-
tives scales as O(N), the computation of the function
takes about three times as long. For F we need to com-
pute Z (exponentiation and summation over N terms)
and m1 (summation over N), but the derivatives can
be computed sequentially and require calculation of
just one of the mk per derivative. Thus, it is benefi-
cial to have as little function evaluations as possible.

We will use derivative-based root-finding methods
with a simple modification so they achieve global con-
vergence (from any starting point). We initialize the
algorithm with an interval bracketing the root (ob-
tained from the bounds (1.1)) and an initial point. The
algorithm consists of two nested loops: an outer loop
with the bisection method, which is slow but guar-
antees global convergence, and an inner loop with a
derivative-based method, which is fast but only locally
convergent. For each iteration of the inner loop, the
algorithm evaluates the function, updates the bounds
based on a new function value, computes the necessary



Entropic Affinities: Properties and Efficient Numerical Computation

Algorithm 1 Root-finding framework

Input: initial β, perplexity K, distances d21, . . . , d
2
N

compute bounds B using Theorem 1.1.
while true do

for k = 1 to maxit do

compute β using any derivative-based method
if tolerance achieved return β
if β 6∈ B exit for loop

update B
end for

compute β using bisection
update B

end while

derivatives and applies a derivative-based method. If
the output of the method falls outside of the current
brackets or the number of iterations exceeds a certain
constant maxit, the inner loop terminates and the next
point is computed using the outer bisection loop. Thus
the sequence of iterates contains a subsequence of bi-
section steps (every maxit steps at most), which neces-
sarily converges. Practically, we use a rather big value
of maxit = 50, since our good initialization (see be-
low) makes it very infrequent for the derivative-based
method step to fail. Algorithm 1 shows the framework.

Finally, to avoid dealing with negative values of β and
to make the function more well-behaved, we find roots
over log β = −2 log σ rather than β or σ. This modifies
the expressions for the derivatives of the function (6)
slightly. The final formulae are available in the sup-
plementary material.

2.1. Choice of the root-finding algorithm

It appears that locally, close to the root, it is not essen-
tial which exact derivative-based method is used, but
how many derivatives are used. Gander (1985) shows
that many of the third-order methods can be described
jointly using simple framework. He proves that the
iterative procedure βk+1 = βk − f(βk)

f ′(βk)
H(t(βk)) where

t(βk) =
f(βk)f

′′(βk)
f ′(βk)2

and H is some function, is of third-
order convergence if H(0) = 1, H ′(0) = 1/2. Halley’s
method is recovered with H(t) = (1 − 1

2 t)
−1, Euler’s

method with H(t) = 2(1 +
√
1− 2t)−1 and H(t) = 1

gives Newton’s method. Traub (1982) showed that,
for any p > 1, given p − 1 derivatives of the function
there exists no method with convergence order higher
than p. Thus, if we use only one derivative, we cannot
do better than second order convergence and locally,
close to the root, the behavior of Newton’s method is
optimal. Similarly, for two derivatives, both Euler’s
and Halley’s methods are optimal for third-order con-
vergence methods. The differences between methods

arise mostly when the iterations are far from the root.

Among the many root-finding methods that we tried,
we focus here mostly on the following three: New-
ton’s, Euler’s and Halley’s method. Newton’s method
is a second-order method that approximates the func-
tion with a line (i.e., up to a first derivative) and the
next iteration is found by the intersection of the tan-
gent of the current point with the x-axis. Euler’s and
Halley’s methods are third-order methods that approx-
imate the function with a parabola and a hyperbola re-
spectively (Scavo & Thoo, 1995). Those curves agree
with the current iterate up to the first two derivatives.
Fig. 2 shows a typical case of search for log β for a given
logK. We initialized the three algorithms in different
places inside the interval (−4, 3) and computed how
many and what kind of iterations they need to find the
root to an accuracy tol = 10−10. Notice that close to
the root, Halley’s and Euler’ method behave almost
identically to each other, while for Newton’s method
the region where the number of iterations equal to 1 is
a lot smaller. This is caused by a higher convergence
order of the former methods compared to the latter.
However, in the region far from the root, the methods
behave quite differently. The initial steps of Newton’s
and Euler’s methods are too big and send the next
iterate out of the bounds, causing our algorithm to
use a bisection. The region where bisection iterations
occur is smaller for Euler’s method compared to that
of Newton’s method because the parabolic approxima-
tion leads to smaller steps than the linear one. Halley’s
method never has to use bisection steps because the
hyperbolic approximation is too conservative and uses
steps that are too small to get out of the flat region.

2.2. Bounds and initialization

For the bounds, our goal is to find a region around
the root that is as tight as possible and is efficient
to compute from the distances. Theorem 1.1 can be
applied for this. It guarantees to contain the root and
it takes a constant amount of time to compute. Fig. 3
shows an example of the bounds and the entropy for a
typical point in the Lena image dataset. We computed
both bounds for different values of K. Notice that
the bounds are quite tight and, except for the small
region near the upper bound, do not include the flat,
numerically challenging region of the function.

As for the initialization, we need to find a good initial
iterate for the root-finding algorithm, i.e., as close as
possible to the root. One way to do it is to provide
precomputed initialization values directly to the algo-
rithm. For example, we can initialize the algorithm
from the middle of the bounds from Theorem 1.1, or
initialize σ from the distance to the kth neighbor. But
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Figure 2. Top: a typical case of the entropy function
H(x, β) (shown in red) for one of the points of the Lena
image dataset. The desired perplexity K = 30 is shown
as a black line. Note the function is plotted in logarithmic
scale for both β and K. We bracket the root in the interval
[−4, 3]. Below we show the number of normal and bisec-
tion iterations for different initializations needed for three
different algorithms: Halley, Euler and Newton.

these initializations ignore the distances to most of the
points, which do affect the entropy and so the root. We
also do not want to include more information in the
initialization if its computational cost becomes com-
mensurate to evaluating the entropy function itself.
Instead, we propose to capitalize on the correlation
that exists between β and the structure of the dataset.
We can then link the points to each other based on
some criterion and initialize the algorithm from the
solution of the points for which β was already found.
This order can be sequential or, more generally, based
on a tree. In the sequential order each new point is
initialized from the solution to the previous one. In
the tree order, the order is not linear, but forms a di-
rected tree (or forest in general) with each point being
a node. The points are then processed in an order
(such as breadth-first search) which ensures that the
root of a parent node is visited before the root of its
children (which are initialized from the parent). For
both sequential and tree orders, each root point can be
initialized, for example, from the middle of the bounds.
We now describe two different strategies for choosing
the order and show how they are correlated with β.

The first, local strategy is based on the existence and
continuity of the function β(x) defined in section 1.
Continuous changes in x lead to continuous changes
in β, so expect nearby points to have similar β values
(except where β(x) changes quickly). Therefore, we
can use a local ordering of the points in the dataset.
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Figure 3. The entropy function (in red) and its bounds.
The solid black and blue lines indicate the lower and the
upper bound obtained using the formulae (7) and (8), re-
spectively, for different values of K. The dashed black line
indicates the minimum of (7).

Among various orders we have explored, the one de-
rived from a minimum spanning tree (or forest) of the
dataset works well and is efficient to compute. We used
Kruskal’s algorithm, which takes O(Nκ logN) time to
construct an MST given a κ-nearest-neighbor graph.
The MST is faster to compute if using a small κ, but
it should not be too small that it loses too much con-
nectivity information. Empirically we found out that
κ = 10 gives a good tradeoff and we use it for all our
experiments. We observed that the choice of the root
point(s) does not critically affect the results.

Our second strategy takes into account the density
around the points. The closer the points are to x, the
smaller the distances dk are and the bigger the entropy
H(x, β) is. Therefore, for the entropy to remain con-
stant, the resulting β must be larger in dense regions
and smaller in sparser ones. Indeed, β (or σ) is related
to a nonparametric density estimate of the dataset.
Estimating the density in the first place is difficult,
but we can use a simple estimate given by the distance
from the query point x to its kth neighbor. Then, we
can sort the points x1, . . . ,xN in increasing distance of
its kth nearest neighbor, which gives a sequential or-
der. As for the choice of k, we find a correlation with
the desired perplexity value K: we observe empirically
that the best k (which gives the best initializations) is
usually approximately equal to K. We call this the
DK order. Note this is different from the old rule-
of-thumb of setting σ directly to the distance to kth
neighbor (k = 7 in Zelnik-Manor & Perona, 2005). We
use this only to initialize the root finding.

Fig. 4 shows how β changes from point to point
and the resulting DK and MST orders for a dataset
of 1 000 randomly generated uniformly distributed
points. β changes according to our predictions above:
the changes are gradual in any local neighborhood and
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Figure 5. Lena test image and the learned β values for ev-
ery pixel for a perplexity K = 30.

regions of similar density have similar β values.

3. Experimental evaluation

We compare several different root-finding algorithms:
Ridder’s, Brent’s and bisection for derivative-free
methods, and Euler’s, Halley’s and Newton’s for
derivative-based methods. The former group of meth-
ods were run as is without any modification. The latter
group were incorporated into our globally convergent
framework (algorithm 1). For those methods, we also
tried several initialization choices. The bounds order
simply initializes each point from the middle of the
bracket given by theorem 1.1. This is an example of
non-sequential initialization, where the order of points
does not matter and points can be processed in any
order. The MST order was used as a local-based or-
der and the DK order was used as a density-based
order. In addition, we compare with two best- and
worst-case orders, that give us best and worst possible
performance. The random order of the points gives
us an idea of the worst-case order. The oracle order
processes the points in the order of their true β values,
which is optimal in terms of initializing the points clos-
est to the solution (although not practical, obviously).

All the user needs to do to obtain entropic affinities for
a given dataset is to set the perplexity K and possibly
their sparsity level. For all the experiments, we used
K = 30 and a sparse distance matrix with nonzero
elements corresponding to the 250 nearest neighbors.

This almost did not alter the final result, because the
terms in (2) responsible for farther distances are neg-
ligible due to the fast decay of the Gaussian tails. For
all the algorithms we set the convergence tolerance to
10−10. We chose such an accurate value because, with
quadratic or cubic convergence rate, one needs very
few additional iterations to achieve such accuracy, and
the user need not worry about setting the tolerance.
However, the tolerance should not be too close to the
machine precision that oscillations occur because of
precision loss. We used three datasets from very dif-
ferent domains: pixels of a single image, an image col-
lection, and word-count vectors from documents.

The first dataset is the 512 × 512 Lena image (fig. 5
left). Each data point in this dataset is a pixel repre-
sented by spatial and range features (i, j, L, u, v) ∈ R

5

where (i, j) is the pixel location in the image and
(L, u, v) the pixel value in a color image (overall N =
262 144 points in D = 5 dimensions). Note that this
dataset has a very peculiar structure: the (i, j) values
are independent of the image itself (as long as the size
is the same). This suggests a special, raster order,
where pixels are processed by zigzagging edge-to-edge
left to right and then right to left from the top to the
bottom of the image. In this order, the spatial features
(i, j) vary slowly and the range features (L, u, v) vary
slowly except at edges. It is an example of local order
with zero computation cost.

Fig. 5(right) shows the resulting β. It preserves much
information about the image, in particular edges. β
tends to change gradually from pixel to pixel; small
values correspond to dark regions of space and big ones
to bright regions. The final β and the corresponding
affinity matrix can be used for segmenting the image
using mean-shift or spectral methods, for example.

For the second dataset we used 60 000 handwritten
digits from the MNIST dataset. Each datapoint is a
28 × 28 grayscale image of a digit represented by a
784-dimensional vector. Finally, the third dataset is
a subset from Grolier’s encyclopedia dataset. Each
datapoint represents the word count of the most pop-
ular 15 275 words from one of the 30 991 articles of the
encyclopedia. Compared with the first two datasets
(especially the first one), where there are reasonably
densely populated areas of input space, the third
dataset mostly consists of empty space. The points
are located far away from each other and β values of
neighboring points are not similar anymore. This will
be clearly visible in the results. The affinities resulting
from the MNIST and Grolier datasets can be used for
visualization using dimensionality reduction, spectral
clustering or semi-supervised learning, for example.
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Figure 6. Runtime statistics for 3 different datasets, with 6 root-finding methods (color-coded as in the legend). From top

to bottom: 512 × 512 Lena image, 60 000 MNIST digits, 30 991 articles from Grolier’s encyclopedia. First two columns:
runtime and average number of iterations for different methods with different initializations. Right column: number of
points that converged for a given number of iterations for the MST order. Note the log scale in many of the plots.

For each of the datasets, we present three statistics in
fig. 6: the total runtime for the different root-finding
algorithms with the different initializations; the aver-
age number of iterations per point required to achieve
the tolerance; and the number of the points that con-
verged after a certain iteration count.

First of all, notice that Halley’s and Euler’s meth-
ods have very similar performance for all the datasets.
Both methods require only two iterations for most of
the points. However, there is a small difference, in
particular for the bounds order of the MNIST dataset
and for the MST, bounds and random orders in the
Grolier dataset. The reason is the initialization in the
flat region for many of the points (note that the result
of those initializations is not good compared to e.g. the
DK order). Similar to what we see in the flat region of
fig. 2, Halley’s method is more conservative and moves
slowly towards the solution, whereas Euler’s method
uses steps that are too big and retreats to bisection,
which moves away from the flat region in one iteration.

Compared to the other derivative-based root-finding
methods, Newton’s method is a second-order method
and requires slightly more iterations than Halley’s or

Euler’s methods. However, its runtime is lower be-
cause each iteration does not need to compute the
second derivative of the entropy, which costs O(N).
For the derivative-free methods, Ridder’s method is
fastest, but is still approximately twice as slow as New-
ton’s method. Brent’s method and the bisection are
approximately 5× and 10 − 20× as slow as Newton’s
method, respectively.

For different initializations, MST and DK have very
similar results for the MNIST and Lena datasets, with
DK being only slightly better (e.g. for Euler’s method
in the Lena dataset it takes 2.09 iterations on average
for DK compared to 2.22 for MST ). However, for the
Grolier dataset the MST order does almost as badly
as the random order. This is due to the spatial empti-
ness that we described above. This does not seem to
affect the DK order, which is only 22% slower than the
oracle order. The bounds and random orders perform
almost identical to each other and not terribly bad,
only about 1–2 iterations more than the other initial-
izations. However, for 50% of the points, the extra
iterations are the bisection iterations during the first
steps of the algorithm when the initial region is flat
and the root-finding methods send us away from the
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bounds. This also indicates that the bounds are quite
tight and one or two extra iterations are able to move
very close to the root no matter where the initializa-
tion is. The raster order for Lena dataset does almost
as good as the MST order, suggesting it as an fast
alternative local order for image pixels. Finally, the
oracle order achieves nearly 1 iteration per point for
Euler’s and Halley’s method on Lena and MNIST. For
example, for Euler’s method only 0.1% of all the points
needed 2 iterations to converge. However, in terms of
the runtime the MST and DK orders achieve a speed
that is only twice as slow as the optimal one. For the
Grolier dataset the average number of iterations per
point is more than one even for the oracle order. This
is because, even in the best case, the σs are not as close
to each other as in the Lena and MNIST datasets.

4. Discussion

The entropic affinities can give high-quality results
with many different machine learning algorithms that
are based on graphs (as illustrated in fig. 1), and only
require the user to set the perplexity K and possi-
bly the sparsity level of the affinity matrix. How-
ever, up to now they have not been in widespread use
outside nonlinear embedding methods such as SNE
(Hinton & Roweis, 2003) or EE (Carreira-Perpiñán,
2010). Reasons for this could be the lack of a closed-
form expression for the bandwidth of each point given
the perplexity, and the (up to now) computational
cost involved in solving for it. With our numerical
algorithms, there is now very little difference between
applying a closed-form formula and solving for the im-
plicit bandwidths almost exactly. This is for two rea-
sons. First, even if a user is able to compute band-
widths very efficiently (e.g. with a rule-of-thumb for-
mula), computing the elements of the affinity matrix
themselves is still O(N2) or O(Nκ) in the full and
sparse case, respectively. Each iteration of our root-
finding method has this same cost, but (1) we require
just a few such iterations, and (2) the affinities are
produced for free in our last iteration. Thus, the
cost of applying the rule-of-thumb formula to compute
the affinity values given the bandwidths is compara-
ble to that of computing entropic affinities and their
bandwidths. Second, we can achieve near-machine-
precision at nearly no extra cost because of the high
order of convergence of the root-finding methods.

The bisection algorithm used by Hinton & Roweis
(2003), although slow, was not much of a prob-
lem up to now because the optimization in meth-
ods such as SNE was so costly that the number
of points N was limited to a few thousands, for
which the bisection time was acceptable. How-

ever, recent improvements in embedding optimization
(Vladymyrov & Carreira-Perpiñán, 2012) have signif-
icantly increased the values of N that are practical:
the embedding optimization takes 15 min for 20 000
MNIST images in a workstation, while the bisection-
based computation of the entropic affinities takes over
20 min and becomes a bottleneck. With our algorithm,
this time is reduced to 55 seconds.

Some work has used the fast Gauss transform to
compute a single bandwidth parameter for ker-
nel density estimation (KDE) (Raykar et al., 2010;
Raykar & Duraiswami, 2007). These algorithms use
an approximate decomposition of the computations to
achieve linear runtime with N -body problems, such
as KDE. As mentioned before, one needs to add the
cost of computing the affinities given the bandwidth,
so by Amdahl’s law this reduces the speedup. The pa-
rameters of the fast Gauss transform are also hard to
tune (Raykar & Duraiswami, 2007) and a bad choice
can make the runtime even slower that the exact com-
putation. More importantly, as mentioned before, in
many cases a single bandwidth parameter is just not
good enough. Based on our knowledge there is no
work that estimates per-point σ fast, except for rules-
of-thumb and cross-validation methods that are slow
(Sheather, 2004; Duong & Hazelton, 2005).

5. Conclusion

By extending the entropic affinity function to the en-
tire Euclidean space, we have been able to characterize
its behavior, show that it is a well-defined function and
give explicit bounds for its implicitly defined value.
Based on these properties, we have analyzed different
algorithms for the computational problems involved:
root-finding and ordering points for best initialization.
One of the best and simplest choices is a Newton-based
iteration, robustified with bisection steps, using a tree-
or density-based order. This achieves just above one
iteration per data point on average, which is the opti-
mally achievable performance.

Entropic affinities work better than using a single
bandwidth or multiple bandwidths set with a rule of
thumb, provide a random-walk matrix for a dataset,
and only require a user to set the global number of
neighbors. The fact that they define the scale implic-
itly and require an iterative computation may have
prevented their widespread application, but our algo-
rithm makes the computation scale up almost as if they
were given in explicit form. Matlab code is available
from the authors’ web page.
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