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Summary

* [he entropic affinities define affinities so that each point has an
effective number of neighbors equal to K.

* First Introduced In:

G. E. Hinton & S. Rowels: "Stochastic Neighbor Embedding”, NIPS 2002.

*Not In a widespread use, even though they work well in a range of
broblems.

*We study some properties of entropic affinities and give fast
algorithms to compute them.



Aftinity matrix

Defines a measure of similarity between points in the dataset.

Affinity matrix

Used In:
Data set

* Dimensionality reduction:
» Stochastic Neighbor Embedding, t-SNE,
Elastic Embedding, Laplacian Eigenmaps. *

o Clustering:
» Mean-5Shift, Spectral clustering.

* Semi-supervised learning. I:
* and others
The performance of the algorithms depends crucially of the affinity
construction, govern by the bandwidtho.

Common practice to set o:

RRE@Esuant,
* rule-of-thumb (e.g. distance to the 7th nearset neighbor, Zelnik & Perona, 05).



Motivation: choice of o

COIL-20: Rotations of objects every 5% input are
greyscale images of 128 X 123, |——"

Affinity matrices:

| Rule-of-thumb: . =
Constant sigma Dist. to the 7th nn (Zelnik & Perona, 05)  Entropic affinities
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Search for good o

Good o should be:

* Set separately for every data point.
e Jake Into account the whole distribution of distances.
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Entropic affinities

In the entropic affinities, the ois set individually for each point such that it has a
distribution over neighbors with fixed perplexity K (Hinton & Rowies, 2003).

* Consider a distribution of the neighbors X1,...,XN € RP for x € RP: XN
K(|[(x —xa)/0]*)

TN K(|(x — xk)/0]?)

posterior distribution of Kernel Density Estimate.

Pn(X;0)

* The entropy of the distribution Is defined as
H(x,0) = = 32,1 Pn(X, 0) log(pa(x, 0))
* Consider the bandwidth o (or precision 8 = #) given the perplexity K:
H(x,0) =log K

* Perplexity of K in a distribution p over N neighbors provides the same surprise
as if we were to choose among K equiprobable neighbors.

* We define entropic affinities as probabilities p = (p1,-..,pnN) for x with respect
to 8. Thos affinities define a random walk matrix.



Entropic affinrties: example
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Entropic affinities: properties

H(Xnaﬁn) — Jr,]j—l pn(Xnaﬁn) log(pn(xnvﬁn)) o 1OgK

* Thisis alD root-finding problem or an

inversion problem 3, = H_ '(log K).

» Should be solved forx,, € X1,...,Xy 6 —Hxp)|

* We can prove that: " —K=30
» [|he root-finding problem s well & A
defined for a Gaussian kernel for 5’2
any 8, > 0, and has a unique root
forany K € (0, N). o

» The inverse I1s a uniquely defined -2 -1 Olog(|3)1

continuously differentiable function

for all x, € R and K € (0, N)

4k




Entropic affinities: bounds

The bounds |BL, Bu] for every K € (0, N)and x,, € RY.
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where A5 = d5 — di, Ay = d3 — df,and p1 is a unique O
solution of the equaﬂon

2(1 —p1)log 2(1 —~ = log (min(v2N, K))

The bounds are computed in O(1) for each point. log(B)



Entropic affinities; computation
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. Com

butation of 5,,; the root-finding

Methods Convergence Derivatives order Nuiner O.f O(N)
order evaluations
Bisection linear 0 |
Derivative- Brent inear 0 |
free
Ridder quadratic 0 2
Newton quadratic | o
Derivative- |
L Halley cubic J 5
Fuler cubic P 3

* The cost of the objective function evaluation and each of derivative is O(N).

* Derivative-free methods above generally converge globally. They work by
iteratively shrinking an interval bracketing the root.

* Derivative-based methods have higher convergence order, but may diverge.



Robustified root-finding algorithm

* We embed the derivative-based algorithm
into bisection loop for global convergence.
* We run the following algorithm for each

XEREX, . -, XN
Input: initialB, perplexity K, 5.5 —
distances df,...,d%, bounds B. 5
while true do 45
for £k = 1to maxit do .
compute Susing a derivative- -
based method c
if tolerance achieved return® °
if8 ¢ B exit for loop 23
update B 2
end for 151 —H(p)
compute S using bisection 1 B:feﬂgfl)ons
update B O a— - 0 5

end while log(B)



Robustified root-finding algorithm

* We embed the derivative-based algorithm
into bisection loop for global convergence
* We run the following algorithm for each

XEREX, . -, XN
Input: initialﬁ per'plexity K, - Bisection: step isoutsideth? br:;ckets
distances df,...,d%, bounds B. 5
while true do 45
for £k = 1to maxit do .
compute Susing a derivative- -

based method 93'

-----

<~ iffB ¢ B exit for' loop Ty 28

_____

---------------- 2
update™8 —H(p)
end for 1% —log(K)
; 3 . 1 Newton
compute S using bisection ) iterations
update B 050 5 0

end while log(B)



Robustified root-finding algorithm

* We embed the derivative-based algorithm .

into bisection loop for global convergence \\

* We run the following algorithm for each = ~<
XEREX, . -, XN 33 *
Input: initialB, perplexity K, 55 Ngmal Step Q)-"....
distances df,...,d%, bounds B. 5
while true do 45
for £k = 1to maxit do .
compute Susing a derivative-
based method < °

" . 3
if tolerance achieved returns

if3 ¢ Bexit for loop =
update B i —H(p)
end for %) —log(K)
X . : Newton
compute S using bisection 1 ) iterations
update BB °3o -5 0

end while log(B)



Robustified root-finding algorithm

* We embed the derivative-based algorithm

into bisection loop for global convergence -
* We run the following algorithm for each =

XEREX, . -, XN

Input: initialB, perplexity K,
distances df,...,d%, bounds B.
while true do
for K = 1to maxit do
compute Susing a derivative-
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Robustified root-finding algorithm

* We embed the derivative-based algorithm -

into bisection loop for global convergence \
* We run the following algorithm for each = \

XEREX, . -, XN 3
Input: initialﬁ? perplexityzk@ 55 ;L 2 %%gmswp:; Q)x’
distances df,...,d%, bounds B. .
while true do 45
for K = 1to maxit do . .
compute Susing a derivative- . i
based method- «ccceana o __ < X
e 1f tolerance achieved retuga‘* >
if 5 & Bréxit for-téop =~ e
update B 2 m——TED
end for 1.5} —og(K)
compute S using bisection 1 <>E$ﬁﬁm
update B 05 5 0

end while log(B)
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2. Inttialization of by,

|. Simple Initialization: : B

* midpoint of the bounds, ’ |

* distance to kth nearest neighbor. |

Typically far from root and require
more rterations. \

2. Each new By s initialized from the s .
solution to its predecessor: ,/3’:\1;>\\4’ ~
* sequential order; e—————- .\"\\ 2IE (‘,7/\
* tree order. \t{:‘;r"\f\
i iieedito find orders that are S

correlated with the behavior of 3. ;
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|. Simple inrtialization: / \

* middle of the bounds, j

* distance to kth nearest neighbor. .
Typically far from root and require \\ 1
more rterations. \ e
2.Each new B, is initialized from the . /// je. ::\ K
solution to Its predecessor:

= Glchilal arder;

e tree order: ——
VWe need to find orders that are
correlated with the behavior of 3.




Sequential or tree order

*Dy, density strategy: for the fixed entropy value, 5 is larger in dense regions and
smaller in sparser ones.

» Use nearest neighbor density estimate.
» By, is proportional to the distance to kth nearest neighbor of x,,.
*MST, local strategy: nearby points have similar 8 values.

» Build a MST around the data.

» Process the points In level-order, so parents are solved for before children.
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cxperimental evaluation: setup

We set the perplexity to K = 30 and the tolerance to 10719,

Inrtializations:

* “oracle™: processes the points in the order of their true 3 values,
e MST: local-based order;

* Dy density-based order,
* bounds: Intialize from the midpoint of the bounds,

 random: Initialize from one of x,, chosen at random.
Root-finding methods:

e Derivative-free: Bisection, Brent, Ridder;

* Derivative-based: Newton, Euler;, Halley.



cxperimental evaluation: Lena
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Bisection: > 10 min.
Our method: 1 min.
Computing just the affinities given (3s:20 s.
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cxperimental evaluation: image

512 x 512 Lena image. Each data point Is a pixel represented by spatial and range
features(s, 7, L, u, v) € R®:
* (4, 7) is the pixel location;

*(L, u,v) the pixel value. N = 262144 points, D = 5dimensions
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cxperimental evaluation: digits

60 000 handwritten digits from the MNIST dataset. Each datapoint is a 28 X 28
grayscale image.

N = 60000 points, D = 784dimensions
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cxperimental evaluation: text

Articles from Grolier's encyclopedia. Each point is a word count of the most
popular 15 275 words from 30 991 articles.

N = 30991 points,D = 15275 dimensions
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Conclusions

* We studied the behavior of entropic affinities and their properties.
* Search for the affinities involves finding the root of non-linear equation.
* We can find the root almost to machine precision In just over one
iteration per point on average using:
» bounds for the root,
» root-finding methods with high-order convergence,
» warm-start initialization based on local or density orders.
*[n applications such as spectral clustering and embeddings, semi-

supervised learning using entropic affinities should give better results
than fixing the bandwidth to a single value or using a rule-of-thumb.

* The only user parameter is the global perplexity value K.

SNEIE BN code online at ntipiieecs.ucmerced.edu, RUR SNSRI
ike [W,s] = ea(X,K).
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