Entropic Affinities: Properties and Efficient Numerical Computation

Max Vladymyrov and Miguel Carreira-Perpiñán

Electrical Engineering and Computer Science University of California, Merced <u>http://eecs.ucmerced.edu</u>

June 18, 2013

International Conference on Machine Learning

Summary

- The entropic affinities define affinities so that each point has an effective number of neighbors equal to K.
- First introduced in: G. E. Hinton & S. Roweis: "Stochastic Neighbor Embedding", NIPS 2002.
- Not in a widespread use, even though they work well in a range of problems.
- •We study some properties of entropic affinities and give fast algorithms to compute them.

Affinity matrix

Defines a measure of similarity between points in the dataset.

Used in:

- Dimensionality reduction:
 - Stochastic Neighbor Embedding, t-SNE, Elastic Embedding, Laplacian Eigenmaps.
- Clustering:
 - Mean-Shift, Spectral clustering.
- Semi-supervised learning.
- and others

The performance of the algorithms depends crucially of the affinity construction, govern by the bandwidth σ .

Common practice to set σ :

- constant,
- rule-of-thumb (e.g. distance to the 7th nearset neighbor, Zelnik & Perona, 05).

Motivation: choice of σ

COIL-20: Rotations of objects every 5°; input are

greyscale images of 128×128 .

Dimensionality Reduction with Elastic Embedding algorithm:

Search for good σ

Good σ should be:

- Set separately for every data point.
- Take into account the whole distribution of distances.

Entropic affinities

In the entropic affinities, the σ is set individually for each point such that it has a distribution over neighbors with fixed perplexity K (Hinton & Rowies, 2003).

• Consider a distribution of the neighbors $\mathbf{x}_1, \ldots, \mathbf{x}_N \in \mathbb{R}^D$ for $\mathbf{x} \in \mathbb{R}^D$:

$$p_n(\mathbf{x};\sigma) = \frac{K(||(\mathbf{x} - \mathbf{x}_n)/\sigma||^2)}{\sum_{k=1}^N K(||(\mathbf{x} - \mathbf{x}_k)/\sigma||^2)}$$

posterior distribution of Kernel Density Estimate.

• The entropy of the distribution is defined as

$$H(\mathbf{x},\sigma) = -\sum_{n=1}^{N} p_n(\mathbf{x},\sigma) \log(p_n(\mathbf{x},\sigma))$$

• Consider the bandwidth σ (or precision $\beta = \frac{1}{2\sigma^2}$) given the perplexity K: $H(\mathbf{x},\beta) = \log K$

• Perplexity of K in a distribution p over N neighbors provides the same surprise as if we were to choose among K equiprobable neighbors.

• We define entropic affinities as probabilities $\mathbf{p} = (p_1, \dots, p_N)$ for \mathbf{x} with respect to β . Thos affinities define a random walk matrix.

 \mathbf{X}_N

 \mathbf{X}

 \mathbf{X}_1

 \mathbf{X}_2

Entropic affinities: example

Entropic affinities: properties

$$H(\mathbf{x}_n, \beta_n) \equiv -\sum_{n=1}^N p_n(\mathbf{x}_n, \beta_n) \log(p_n(\mathbf{x}_n, \beta_n)) = \log K$$

- This is a 1D root-finding problem or an inversion problem $\beta_n = H_{x_n}^{-1}(\log K)$.
- Should be solved for $\mathbf{x}_n \in \mathbf{x}_1, \dots, \mathbf{x}_N$
- We can prove that:
 - The root-finding problem is well \mathfrak{S}^4 defined for a Gaussian kernel for \mathfrak{S}_2 any $\beta_n > 0$, and has a unique root for any $K \in (0, N)$.
 - The inverse is a uniquely defined continuously differentiable function for all $\mathbf{x}_n \in \mathbb{R}^N$ and $K \in (0, N)$.

Entropic affinities: bounds

The bounds $[\beta_L, \beta_U]$ for every $K \in (0, N)$ and $\mathbf{x}_n \in \mathbb{R}^N$:

$$\beta_L = \max\left(\frac{N\log\frac{N}{K}}{(N-1)\Delta_N^2}, \sqrt{\frac{\log\frac{N}{K}}{d_N^4 - d_1^4}}\right)$$
$$\beta_U = \frac{1}{\Delta_2^2}\log\left(\frac{p_1}{1 - p_1}(N-1)\right),$$

where $\Delta_2^2=d_2^2-d_1^2$, $\Delta_N^2=d_N^2-d_1^2$, and p_1 is a unique solution of the equation

 $2(1 - p_1) \log \frac{N}{2(1 - p_1)} = \log \left(\min(\sqrt{2N}, K) \right)$

The bounds are computed in $\mathcal{O}(1)$ for each point.

$$\in \mathbb{R}^{N}:$$

$$\int_{d_{N}} \int_{d_{2}} \int_{d_{1}} \int_{d_{1}} \int_{d_{1}} \int_{d_{1}} \int_{d_{1}} \int_{\beta_{L}} \int_{\beta_{L}}$$

Entropic affinities: computation

For every $\mathbf{x}_n \in \mathbf{x}_1, \ldots, \mathbf{x}_N$

$$H(\mathbf{x}_n,\beta_n) = \log K$$

I. Initialize β_n as close to the root as possible.

2. Compute the root β_n .

I. Computation of β_n ; the root-finding

Methods		Convergence order	Derivatives order	Number of $\mathcal{O}(N)$ evaluations
Derivative- free	Bisection	linear	0	
	Brent	linear	0	1
	Ridder	quadratic	0	2
Derivative- based	Newton	quadratic		2
	Halley	cubic	2	3
	Euler	cubic	2	3

• The cost of the objective function evaluation and each of derivative is $\mathcal{O}(N)$.

- Derivative-free methods above generally converge globally. They work by iteratively shrinking an interval bracketing the root.
- Derivative-based methods have higher convergence order, but may diverge.

- We embed the derivative-based algorithm into bisection loop for global convergence.
- We run the following algorithm for each $\mathbf{x}_n \in \mathbf{x}_1, \dots, \mathbf{x}_N$

- We embed the derivative-based algorithm into bisection loop for global convergence
- We run the following algorithm for each $\mathbf{x}_n \in \mathbf{x}_1, \dots, \mathbf{x}_N$

We embed the derivative-based algorithm into bisection loop for global convergence
We run the following algorithm for each

 $\mathbf{x}_n \in \mathbf{x}_1, \dots, \mathbf{x}_N$

```
Input: initial\beta, perplexity K,
distances d_1^2, \ldots, d_N^2, bounds \mathcal{B}.
while true do
  for k = 1 to maxit do
     compute \beta using a derivative-
     based method
       if tolerance achieved return ອິ
       if \beta \notin \mathcal{B} exit for loop
       update \mathcal{B}
  end for
  compute \beta using bisection
  update \mathcal{B}
end while
```


We embed the derivative-based algorithm into bisection loop for global convergence
We run the following algorithm for each x_n ∈ x₁,..., x_N

```
Input: initial\beta, perplexity K,
distances d_1^2, \ldots, d_N^2, bounds \mathcal{B}.
while true do
  for k = 1 to maxit do
     compute \beta using a derivative-
     based method
       if tolerance achieved return ອິ
       if \beta \notin \mathcal{B} exit for loop
       update \mathcal{B}
  end for
  compute \beta using bisection
  update \mathcal{B}
end while
```


3.5

3.4

3.3

We embed the derivative-based algorithm into bisection loop for global convergence
We run the following algorithm for each

 $\mathbf{x}_n \in \mathbf{x}_1, \dots, \mathbf{x}_N$

2. Initialization of β_n

I. Simple initialization:

- midpoint of the bounds,
- distance to kth nearest neighbor.
 Typically far from root and require more iterations.
- 2. Each new β_n is initialized from the solution to its predecessor:
 - sequential order;
 - tree order.

We need to find orders that are correlated with the behavior of β .

2. Initialization of β_n

I. Simple initialization:

- middle of the bounds,
- distance to kth nearest neighbor.
 Typically far from root and require more iterations.
- 2. Each new β_n is initialized from the solution to its predecessor:
 - sequential order;
 - tree order.

We need to find orders that are correlated with the behavior of β .

Sequential or tree order

• \mathcal{D}_k , density strategy: for the fixed entropy value, β is larger in dense regions and smaller in sparser ones.

- Use nearest neighbor density estimate.
- $\flat \beta_n$ is proportional to the distance to kth nearest neighbor of \mathbf{x}_n .
- •MST, local strategy: nearby points have similar β values.
 - Build a MST around the data.
 - \bullet Process the points in level-order, so parents are solved for before children. True β $$\mathcal{D}_K$$ MST

Experimental evaluation: setup

We set the perplexity to K = 30 and the tolerance to 10^{-10} .

Initializations:

- "oracle": processes the points in the order of their true β values,
- MST: local-based order,
- \mathcal{D}_K : density-based order,
- bounds: initialize from the midpoint of the bounds,
- random: initialize from one of \mathbf{x}_n chosen at random.

Root-finding methods:

- Derivative-free: Bisection, Brent, Ridder.
- Derivative-based: Newton, Euler, Halley.

Experimental evaluation: Lena

 $\begin{array}{l} \mbox{Bisection:} > 10 \mbox{ min.} \\ \mbox{Our method: } 1 \mbox{ min.} \\ \mbox{Computing just the affinities given } \beta {\rm s:} 20 \mbox{ s.} \end{array}$

Experimental evaluation: image

512 × 512 Lena image. Each data point is a pixel represented by spatial and range features $(i, j, L, u, v) \in \mathbb{R}^5$: •(i, j) is the pixel location; •(L, u, v) the pixel value. $N = 262\,144$ points, D = 5 dimensions

23

Experimental evaluation: digits

 $60\,000$ handwritten digits from the MNIST dataset. Each datapoint is a 28×28 grayscale image.

Experimental evaluation: text

Articles from Grolier's encyclopedia. Each point is a word count of the most popular $15\,275$ words from $30\,991$ articles.

 $N = 30\,991\,\mathrm{points}, D = 15\,275\,\mathrm{dimensions}$

Conclusions

- We studied the behavior of entropic affinities and their properties.
- Search for the affinities involves finding the root of non-linear equation.
- We can find the root almost to machine precision in just over one iteration per point on average using:
 - bounds for the root,
 - root-finding methods with high-order convergence,
 - warm-start initialization based on local or density orders.
- In applications such as spectral clustering and embeddings, semisupervised learning using entropic affinities should give better results than fixing the bandwidth to a single value or using a rule-of-thumb.
- \bullet The only user parameter is the global perplexity value K.
- MATLAB code online at <u>http://eecs.ucmerced.edu</u>. Run it simply like [W,s] = ea(X,K).