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•The entropic affinities define affinities so that each point has an 
effective number of neighbors equal to K. 

•First introduced in: 

•Not in a widespread use, even though they work well in a range of 
problems. 

•We study some properties of entropic affinities and give fast 
algorithms to compute them.

Summary
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G. E. Hinton & S. Roweis: "Stochastic Neighbor Embedding", NIPS 2002. 



Affinity matrix

Used in:
• Dimensionality reduction:
‣ Stochastic Neighbor Embedding, t-SNE, 

Elastic Embedding,  Laplacian Eigenmaps.
• Clustering:
‣ Mean-Shift, Spectral clustering.

• Semi-supervised learning.
• and others

The performance of the algorithms depends crucially of the affinity 
construction, govern by the bandwidth   .�
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Defines a measure of similarity between points in the dataset.

Common practice to set   :
• constant,
• rule-of-thumb (e.g. distance to the 7th nearset neighbor, Zelnik & Perona, 05).

�

Data set Affinity matrix

 

 

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1



4

Affinity matrices:

Entropic affinitiesRule-of-thumb:Constant sigma
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Motivation: choice of     �

Dist. to the 7th nn (Zelnik & Perona, 05)

COIL-20: Rotations of objects every 5º; input are 
greyscale images of                .128⇥ 128
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Dimensionality Reduction with Elastic Embedding algorithm:

Motivation: choice of     

Entropic affinitiesConstant sigma

COIL-20: Rotations of objects every 5º; input are 
greyscale images of                .128⇥ 128

Rule-of-thumb:
Dist. to the 7th nn (Zelnik & Perona, 05)

�



Search for good   

• Set separately for every data point.
• Take into account the whole distribution of distances.

Good    should be:
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Entropic affinities
In the entropic affinities, the  is set individually for each point such that it has a 
distribution over neighbors with fixed perplexity    (Hinton & Rowies, 2003).

• The entropy of the distribution is defined as
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pn(x;�) =
K
�
||(x� xn)/�||2

�
PN

k=1 K
�
||(x� xk)/�||2

�

• Consider a distribution of the neighbors                            for             :x1, . . . ,xN 2 RD
x 2 RD

H(x,�) = �
PN

n=1 pn(x,�) log(pn(x,�))

• Consider the bandwidth    (or precision             ) given the perplexity    :�

H(x,�) = logK

• Perplexity of     in a distribution    over    neighbors provides the same surprise 
as if we were to choose among    equiprobable neighbors.

K p N

K

• We define entropic affinities as probabilities                           for    with respect 
to   .  Thos affinities define a random walk matrix.

posterior distribution of Kernel Density Estimate.

K

� = 1
2�2

x

�

x

x1
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xN

�
p = (p1, . . . , pN )

K



Entropic affinities: example
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Entropic affinities: properties

• This is a      root-finding problem or an 
inversion problem                            . 
• Should be solved for
• We can prove that: 
‣The root-finding problem is well 
defined for a Gaussian kernel for 
any    , and has a unique root            
for any                 . 
‣The inverse is a uniquely defined 
continuously differentiable function 
for all               and                 .
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Entropic affinities: bounds
The bounds              for every                  and              :

The bounds are computed in        for each point.
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K 2 (0, N)[�L,�U ]

where                      ,                        , and     is a unique 
solution of the equation 
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Entropic affinities: computation

For every

1. Initialize     as close to the root as 
possible.

2. Compute the root     .�n

xn 2 x1, . . . ,xN

�n

x1 x2

xN
H(xn,�n) = logK
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MethodsMethods Convergence 
order Derivatives order Number of         .      

evaluations

Derivative-
free

Bisection linear 0 1
Derivative-

free Brent linear 0 1Derivative-
free

Ridder quadratic 0 2

Derivative-
based

Newton quadratic 1 2
Derivative-

based Halley cubic 2 3Derivative-
based

Euler cubic 2 3

• Derivative-free methods above generally converge globally. They work by 
iteratively shrinking an interval bracketing the root.
• Derivative-based methods have higher convergence order, but may diverge.

• The cost of the objective function evaluation and each of derivative is          .O(N)

O(N)

1. Computation of     ; the root-finding�n



Robustified root-finding algorithm
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H(`)
log(K)
iterations

K
d21, . . . , d

2
N B

k = 1
�

� /2 B
B

�
B

, bounds  .
Input: initial , perplexity  , 
distances 
while true do 
for      to maxit do 
compute  using a derivative-
based method
if tolerance achieved return  
if      exit for loop
update  

end for
compute  using bisection
update  

end while

�

•We embed the derivative-based algorithm 
into bisection loop for global convergence.

•We run the following algorithm for each 
xn 2 x1, . . . ,xN
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Robustified root-finding algorithm
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if tolerance achieved return  
if      exit for loop
update  
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�

•We embed the derivative-based algorithm 
into bisection loop for global convergence

•We run the following algorithm for each 
xn 2 x1, . . . ,xN
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Normal step
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•We embed the derivative-based algorithm 
into bisection loop for global convergence

•We run the following algorithm for each 
xn 2 x1, . . . ,xN
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1. Simple initialization:
• midpoint of the bounds,
• distance to   th nearest neighbor. 
Typically far from root and require 
more iterations.

2. Each new   is initialized from the 
solution to its predecessor:
• sequential order;
• tree order.

k

�

2. Initialization of �n

�n

We need to find orders that are 
correlated with the behavior of   .  
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2. Initialization of �n

1. Simple initialization:
• middle of the bounds,
• distance to   th nearest neighbor. 
Typically far from root and require 
more iterations.

2. Each new   is initialized from the 
solution to its predecessor:
• sequential order;
• tree order.

k

We need to find orders that are 
correlated with the behavior of   .  �

�n
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Sequential or tree order
•    , density strategy: for the fixed entropy value,   is larger in dense regions and 
smaller in sparser ones.
‣Use nearest neighbor density estimate. 
‣      is proportional to the distance to   th nearest neighbor of     . 

•MST, local strategy: nearby points have similar    values.
‣ Build a MST around the data.
‣ Process the points in level-order, so parents are solved for before children. 

Dk

�

�

MSTTrue � DK

k�n xn
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Experimental evaluation: setup

Initializations:
• “oracle”: processes the points in the order of their true   values,
• MST: local-based order,
•      : density-based order,
• bounds: initialize from the midpoint of the bounds,
• random: initialize from one of     chosen at random.

We set the perplexity to             and the tolerance to         .

Root-finding methods:
• Derivative-free: Bisection, Brent, Ridder. 
• Derivative-based: Newton, Euler, Halley.
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�

K = 30 10�10
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xn



Bisection:         min.
Our method:    min. 
Computing just the affinities given   s:     s.�

> 10
1
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Experimental evaluation: Lena
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Experimental evaluation: image
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          Lena image. Each data point is a pixel represented by spatial and range 
features                           :
•        is the pixel location;
•             the pixel value.

512⇥ 512
(i, j, L, u, v) 2 R5

(i, j)
(L, u, v)

Number of iterations Runtime

Oracle MST DK Raster Bounds Random Oracle MST DK Raster Bounds Random

Number of points converged after   iterations

iteration

i

Euler
Newton
Halley
Ridder
Brent
Bisection

N = 262 144 points, D = 5dimensions

i
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Experimental evaluation: digits
           handwritten digits from the MNIST dataset. Each datapoint is a       
grayscale image.
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Experimental evaluation: text
Articles from Grolier’s encyclopedia. Each point is a word count of the most 
popular           words from           articles.
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30 991

RuntimeNumber of iterations

Oracle MST DK Bounds RandomOracle MST DK Bounds Random

iteration

Number of points converged after   iterationsi

Euler
Newton
Halley
Ridder
Brent
Bisection

15 275

D = 15 275points, dimensionsN = 30 991

i



Conclusions
•We studied the behavior of entropic affinities and their properties.
•Search for the affinities involves finding the root of non-linear equation.
•We can find the root almost to machine precision in just over one 

iteration per point on average using:
‣ bounds for the root,
‣ root-finding methods with high-order convergence, 
‣ warm-start initialization based on local or density orders.

•In applications such as spectral clustering and embeddings, semi-
supervised learning using entropic affinities should give better results 
than fixing the bandwidth to a single value or using a rule-of-thumb. 

•The only user parameter is the global perplexity value    . 
•MATLAB code online at http://eecs.ucmerced.edu. Run it simply 

like                             .
26

[W,s] = ea(X,K)

K
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