
Electrical Engineering and Computer Science
University of California, Merced

http://eecs.ucmerced.edu

June 18, 2013

Entropic Affinities:
Properties and Efficient
Numerical Computation

Max Vladymyrov and Miguel Carreira-Perpiñán

http://eecs.ucmerced.edu
http://eecs.ucmerced.edu

•The entropic affinities define affinities so that each point has an
effective number of neighbors equal to K.

•First introduced in:

•Not in a widespread use, even though they work well in a range of
problems.

•We study some properties of entropic affinities and give fast
algorithms to compute them.

Summary

2

G. E. Hinton & S. Roweis: "Stochastic Neighbor Embedding", NIPS 2002.

Affinity matrix

Used in:
• Dimensionality reduction:
‣ Stochastic Neighbor Embedding, t-SNE,

Elastic Embedding, Laplacian Eigenmaps.
• Clustering:
‣ Mean-Shift, Spectral clustering.

• Semi-supervised learning.
• and others

The performance of the algorithms depends crucially of the affinity
construction, govern by the bandwidth .�

3

Defines a measure of similarity between points in the dataset.

Common practice to set :
• constant,
• rule-of-thumb (e.g. distance to the 7th nearset neighbor, Zelnik & Perona, 05).

�

Data set Affinity matrix

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4

Affinity matrices:

Entropic affinitiesRule-of-thumb:Constant sigma

1

2

3

4

5

6

7
x 10−5

0

2

4

6

8

10

12

14

16x 10−6

0

0.5

1

1.5

2

2.5

3

3.5

x 10−4

Motivation: choice of �

Dist. to the 7th nn (Zelnik & Perona, 05)

COIL-20: Rotations of objects every 5º; input are
greyscale images of .128⇥ 128

5

Dimensionality Reduction with Elastic Embedding algorithm:

Motivation: choice of

Entropic affinitiesConstant sigma

COIL-20: Rotations of objects every 5º; input are
greyscale images of .128⇥ 128

Rule-of-thumb:
Dist. to the 7th nn (Zelnik & Perona, 05)

�

Search for good

• Set separately for every data point.
• Take into account the whole distribution of distances.

Good should be:

6

�n

�n

xn

xn

x1
x1x2

x2

�

�

Entropic affinities
In the entropic affinities, the is set individually for each point such that it has a
distribution over neighbors with fixed perplexity (Hinton & Rowies, 2003).

• The entropy of the distribution is defined as

7

pn(x;�) =
K
�
||(x� xn)/�||2

�
PN

k=1 K
�
||(x� xk)/�||2

�

• Consider a distribution of the neighbors for :x1, . . . ,xN 2 RD
x 2 RD

H(x,�) = �
PN

n=1 pn(x,�) log(pn(x,�))

• Consider the bandwidth (or precision) given the perplexity :�

H(x,�) = logK

• Perplexity of in a distribution over neighbors provides the same surprise
as if we were to choose among equiprobable neighbors.

K p N

K

• We define entropic affinities as probabilities for with respect
to . Thos affinities define a random walk matrix.

posterior distribution of Kernel Density Estimate.

K

� = 1
2�2

x

�

x

x1

x2

xN

�
p = (p1, . . . , pN)

K

Entropic affinities: example

8

Entropic affinities: properties

• This is a root-finding problem or an
inversion problem .
• Should be solved for
• We can prove that:
‣The root-finding problem is well
defined for a Gaussian kernel for
any , and has a unique root
for any .
‣The inverse is a uniquely defined
continuously differentiable function
for all and .

9

−2 −1 0 1 2 3
0

2

4

6

log(`)
lo

g(
K)

H(x,`)
K=30

H(xn,�n) ⌘ �
PN

n=1 pn(xn,�n) log(pn(xn,�n)) = logK

�⇤

1D
�
n

= H�1
xn

(logK)

�n > 0
K 2 (0, N)

K 2 (0, N)xn 2 RN

xn 2 x1, . . . ,xN

−2 −1 0 1 2 3
0

2

4

6

log(`)
lo
g(
K)

Entropic affinities: bounds
The bounds for every and :

The bounds are computed in for each point.

10

K 2 (0, N)[�L,�U]

where , , and is a unique
solution of the equation

�⇤
�U

�L

xn 2 RN

2(1� p1) log
N

2(1�p1)
= log

�
min(

p
2N,K)

�

�U =

1

�

2
2

log

✓
p1

1� p1
(N � 1)

◆
,

�L = max

0

@ N log

N
K

(N � 1)�

2
N

,

s
log

N
K

d4N � d41

1

A ,

�2
N = d2N � d21�2

2 = d22 � d21 p1

O(1)

d1

d2

dN

11

Entropic affinities: computation

For every

1. Initialize as close to the root as
possible.

2. Compute the root .�n

xn 2 x1, . . . ,xN

�n

x1 x2

xN
H(xn,�n) = logK

12

MethodsMethods Convergence
order Derivatives order Number of .

evaluations

Derivative-
free

Bisection linear 0 1
Derivative-

free Brent linear 0 1Derivative-
free

Ridder quadratic 0 2

Derivative-
based

Newton quadratic 1 2
Derivative-

based Halley cubic 2 3Derivative-
based

Euler cubic 2 3

• Derivative-free methods above generally converge globally. They work by
iteratively shrinking an interval bracketing the root.
• Derivative-based methods have higher convergence order, but may diverge.

• The cost of the objective function evaluation and each of derivative is .O(N)

O(N)

1. Computation of ; the root-finding�n

Robustified root-finding algorithm

13

−10 −5 0 5
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

lo
g(

K)

log(`)

1

H(`)
log(K)
iterations

K
d21, . . . , d

2
N B

k = 1
�

� /2 B
B

�
B

, bounds .
Input: initial , perplexity ,
distances
while true do
for to maxit do
compute using a derivative-
based method
if tolerance achieved return
if exit for loop
update

end for
compute using bisection
update

end while

�

•We embed the derivative-based algorithm
into bisection loop for global convergence.

•We run the following algorithm for each
xn 2 x1, . . . ,xN

14

−10 −5 0 5
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

lo
g(

K)

log(`)

1

Bisection: step is outside the brackets

H(`)
log(K)
Newton
iterations

Robustified root-finding algorithm

K
d21, . . . , d

2
N B

k = 1
�

� /2 B
B

�
B

, bounds .
Input: initial , perplexity ,
distances
while true do
for to maxit do
compute using a derivative-
based method
if tolerance achieved return
if exit for loop
update

end for
compute using bisection
update

end while

�

•We embed the derivative-based algorithm
into bisection loop for global convergence

•We run the following algorithm for each
xn 2 x1, . . . ,xN

15

−10 −5 0 5
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

lo
g(

K)

log(`)

12

Normal step

H(`)
log(K)
Newton
iterations

−3.7 −3.6 −3.5 −3.4 −3.3 −3.2 −3.1 −3
3.2

3.3

3.4

3.5

3.6

Robustified root-finding algorithm

K
d21, . . . , d

2
N B

k = 1
�

� /2 B
B

�
B

, bounds .
Input: initial , perplexity ,
distances
while true do
for to maxit do
compute using a derivative-
based method
if tolerance achieved return
if exit for loop
update

end for
compute using bisection
update

end while

�

•We embed the derivative-based algorithm
into bisection loop for global convergence

•We run the following algorithm for each
xn 2 x1, . . . ,xN

16

−10 −5 0 5
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

lo
g(

K)

log(`)

12 3

Normal step

H(`)
log(K)
Newton
iterations

−3.7 −3.6 −3.5 −3.4 −3.3 −3.2 −3.1 −3
3.2

3.3

3.4

3.5

3.6

Robustified root-finding algorithm

K
d21, . . . , d

2
N B

k = 1
�

� /2 B
B

�
B

, bounds .
Input: initial , perplexity ,
distances
while true do
for to maxit do
compute using a derivative-
based method
if tolerance achieved return
if exit for loop
update

end for
compute using bisection
update

end while

�

•We embed the derivative-based algorithm
into bisection loop for global convergence

•We run the following algorithm for each
xn 2 x1, . . . ,xN

17

−10 −5 0 5
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

lo
g(

K)

log(`)

12 34

Normal step

H(`)
log(K)
Newton
iterations

−3.7 −3.6 −3.5 −3.4 −3.3 −3.2 −3.1 −3
3.2

3.3

3.4

3.5

3.6

Robustified root-finding algorithm

K
d21, . . . , d

2
N B

k = 1
�

� /2 B
B

�
B

, bounds .
Input: initial , perplexity ,
distances
while true do
for to maxit do
compute using a derivative-
based method
if tolerance achieved return
if exit for loop
update

end for
compute using bisection
update

end while

�

•We embed the derivative-based algorithm
into bisection loop for global convergence

•We run the following algorithm for each
xn 2 x1, . . . ,xN

18

1. Simple initialization:
• midpoint of the bounds,
• distance to th nearest neighbor.
Typically far from root and require
more iterations.

2. Each new is initialized from the
solution to its predecessor:
• sequential order;
• tree order.

k

�

2. Initialization of �n

�n

We need to find orders that are
correlated with the behavior of .

19

2. Initialization of �n

1. Simple initialization:
• middle of the bounds,
• distance to th nearest neighbor.
Typically far from root and require
more iterations.

2. Each new is initialized from the
solution to its predecessor:
• sequential order;
• tree order.

k

We need to find orders that are
correlated with the behavior of . �

�n

4

5

6

7

8

9

10

Sequential or tree order
• , density strategy: for the fixed entropy value, is larger in dense regions and
smaller in sparser ones.
‣Use nearest neighbor density estimate.
‣ is proportional to the distance to th nearest neighbor of .

•MST, local strategy: nearby points have similar values.
‣ Build a MST around the data.
‣ Process the points in level-order, so parents are solved for before children.

Dk

�

�

MSTTrue � DK

k�n xn

50

100

150

200

250

300

Experimental evaluation: setup

Initializations:
• “oracle”: processes the points in the order of their true values,
• MST: local-based order,
• : density-based order,
• bounds: initialize from the midpoint of the bounds,
• random: initialize from one of chosen at random.

We set the perplexity to and the tolerance to .

Root-finding methods:
• Derivative-free: Bisection, Brent, Ridder.
• Derivative-based: Newton, Euler, Halley.

21

�

K = 30 10�10

DK

xn

Bisection: min.
Our method: min.
Computing just the affinities given s: s.�

> 10
1

20

Experimental evaluation: Lena

22

100 101 1020

0.5

1

1.5

2x 105

iteration

nu
m

be
r o

f i
te

ra
tio

ns

best MST epsilonK raster bounds random101

102

103

ru
nt
im
e

best MST epsilonK raster bounds random

100

101

102

nu
m
be
rIt
er
at
io
ns

Experimental evaluation: image

23

 Lena image. Each data point is a pixel represented by spatial and range
features :
• is the pixel location;
• the pixel value.

512⇥ 512
(i, j, L, u, v) 2 R5

(i, j)
(L, u, v)

Number of iterations Runtime

Oracle MST DK Raster Bounds Random Oracle MST DK Raster Bounds Random

Number of points converged after iterations

iteration

i

Euler
Newton
Halley
Ridder
Brent
Bisection

N = 262 144 points, D = 5dimensions

i

best MST epsilonK bounds random100

101

102

nu
m
be
rIt
er
at
io
ns

best MST epsilonK bounds random
101

102

ru
nt
im
e

Experimental evaluation: digits
 handwritten digits from the MNIST dataset. Each datapoint is a
grayscale image.

24

60 000 28⇥ 28

Oracle MST DK Bounds Random Oracle MST DK Bounds Random

100 101 1020

1

2

3

4x 104

iteration

nu
m

be
r o

f i
te

ra
tio

ns

iteration

Number of iterations Runtime

Number of points converged after iterationsi

Euler
Newton
Halley
Ridder
Brent
Bisection

N = 60 000 D = 784points, dimensions

i

best MST epsilonK bounds random100

101

102

nu
m
be
rIt
er
at
io
ns

best MST epsilonK bounds random100

101

102

ru
nt
im
e

Experimental evaluation: text
Articles from Grolier’s encyclopedia. Each point is a word count of the most
popular words from articles.

100 101 1020

0.5

1

1.5

2x 104

iteration

nu
m

be
r o

f i
te

ra
tio

ns

25

30 991

RuntimeNumber of iterations

Oracle MST DK Bounds RandomOracle MST DK Bounds Random

iteration

Number of points converged after iterationsi

Euler
Newton
Halley
Ridder
Brent
Bisection

15 275

D = 15 275points, dimensionsN = 30 991

i

Conclusions
•We studied the behavior of entropic affinities and their properties.
•Search for the affinities involves finding the root of non-linear equation.
•We can find the root almost to machine precision in just over one

iteration per point on average using:
‣ bounds for the root,
‣ root-finding methods with high-order convergence,
‣ warm-start initialization based on local or density orders.

•In applications such as spectral clustering and embeddings, semi-
supervised learning using entropic affinities should give better results
than fixing the bandwidth to a single value or using a rule-of-thumb.

•The only user parameter is the global perplexity value .
•MATLAB code online at http://eecs.ucmerced.edu. Run it simply

like .
26

[W,s] = ea(X,K)

K

http://eecs.ucmerced.edu
http://eecs.ucmerced.edu

