
ENTROPIC AFFINITIES: PROPERTIES AND
EFFICIENT NUMERICAL COMPUTATION
Max Vladymyrov and Miguel Á. Carreira-Perpiñán. EECS, UC Merced, USA

1 Abstract

Gaussian affinities are commonly used in graph-based
methods such as spectral clustering or nonlinear embed-
ding. Hinton and Roweis (2003) introduced a way to set
the scale individually for each point so that it has a dis-
tribution over neighbors with a desired perplexity, or ef-
fective number of neighbors. This gives very good affini-
ties that adapt locally to the data but are harder to com-
pute. We study the mathematical properties of these en-
tropic affinities and show that they implicitly define a con-
tinuously differentiable function in the input space and
give bounds for it. We then devise a fast algorithm to
compute the widths and affinities, based on robustified,
quickly convergent root-finding methods combined with a
tree- or density-based initialization scheme that exploits
the slowly-varying behavior of this function. This algo-
rithm is nearly optimal and much more accurate and fast
than the existing bisection-based approach, particularly
with large datasets, as we show with image and text data.

2 Motivation
The bandwidth σ parameter in Gaussian affinities is data-depen-

dent and usually set using some rule-of-thumb. Too high values

result in almost identical interaction between neighboring points,
while too low values result in

almost zero interaction.

Better results are achieved

when σ is set separately for

each data point and takes

into account the whole distri-

bution of distances.

σ

⇒
σ

Example: 2D embedding of COIL objects
Entropic Affinities Constant σ Dist. to 7th neighbor

200 400 600
19

20

21

N

K

200 400 600
0

35

70

N
200 400 600

0

250

500

N

3 Entropic affinities

In the entropic affinities, the bandwidth is set individually for
each point such that it has a distribution over neighbors with
fixed perplexity K (Hinton & Roweis, 2003).
For a point x ∈ R

D, consider the posterior distribution of an
isotropic kernel density estimator of width σ defined on a set

x1, . . . ,xN ∈ R
D. We have a discrete distribution p(x;σ) with prob-

abilities for n = 1, . . . , N

pn(x;σ) =
K
(

‖(x− xn)/σ‖2
)

∑N
k=1K

(

‖(x− xk)/σ‖2
) =

K
(

(dn/σ)
2
)

∑N
k=1K

(

(dk/σ)2
)

The entropy of the distribution is defined as

H(x, σ) = −
∑N

n=1 pn(x, σ) log(pn(x, σ))

= −
∑N

n=1 pn(x, σ) logKn + log
∑N

n=1Kn

For the Gaussian kernel it becomes (define β = 1/2σ2):

H(x, β) = β

N
∑

n=1

pn(x, β)d
2
n + log

N
∑

n=1

exp(−d2nβ).

Define the partition function Z(β) =
∑N

n=1 exp(−d2nβ) and mo-

ments mk(β) =
∑N

n=1 pnd
2k
n . Then:

H(x, β) = βm1 + logZ, H ′
β(x, β) = −β(m2 −m2

1)

H ′′
β(x, β) = β(m3 − 3m2m1 + 2m3

1) +m2
1 −m2.

Setting σ (or β) given the perplexity K implies finding the root of

the nonlinear equation: H(x, β)− logK = 0.

4 Entropic affinities: Properties

1. The root-finding problem is well defined for any value of β > 0
and has a unique root β(x) for any K ∈ (0, N), so H(x, β) is

invertible over β.

2. This unique inverse is a continuously differentiable function β(x,K)
for all K ∈ (0, logN) and x ∈ R

D.

3. The root is in the interval [βL, βU ] where the bounds are, for every

x and K:

βL = max





N log N
K

(N − 1)∆2
N

,

√

log N
K

d4N − d41



 ,

βU =
1

∆2
2

log

(

p1
1− p1

(N − 1)

)

,

where d21 < d22 < · · · < d2N , ∆2
N =

d2N − d21, ∆
2
2 = d22 − d21 and p1 is the

unique solution in the interval

-3 -1 1
0

2

4

 

 

log β

lo
g
K

Entropy
Lower
Upper

[3/4, 1] of the equation: 2(1 − p1) log
N

2(1−p1)
= log

(

min(
√
2N,K)

)

.

The bounds can be computed in O(1) for each point.

5 Entropic affinities: Computation

For each point, we run a quickly-convergent, robustified root-

finding algorithm with a clever initialization.

1. Choice of root-finding algorithm

We focus of the following methods:

1. Derivative-free methods. They define an interval around the

root and iteratively shrink it. Slow but guaranteed convergence.

•Bisection - first-order convergence.

•Brent - superlinear convergence.

•Ridder - quadratic convergence.

2. Derivative-based methods. Generally do not have convergence

guarantees. High-order convergence.

•Newton - second order, approximation with a line.

•Euler - third order, approximation with a parabola.

•Halley - third order, approximation with a hyperbola.

We robustify the derivative-based methods to achieve

convergence from any starting point by embedding

them in a bisection loop:
Input: initial β, perplexity K, distances d21, . . . , d

2
N

compute bounds B
while true do

for k = 1 to maxit do
compute β using a derivative-based method

if tolerance achieved return β
if β 6∈ B exit for loop
update B

end for
compute β using bisection

update B
end while

2. Initialization
The initialization should be close to the root:

1. Simple initializations, e.g. the middle of the bounds

or the distance to kth nearest neighbor, are typically

far from the root and require more iterations.

2. Sequential or tree order, based on the correlation

between β and the structure of the dataset. Each

new point is initialized from the solution to its prede-

cessor. Good orders require just over one iteration

on average:

•MST, local strategy: continuous changes in x lead

to continuous changes in β, so nearby points have

similar β values. Build a minimum spanning tree

around the data and process the points in level-

order, so parents are initialized before children.

•DK, density strategy: for the entropy to remain con-

stant, the resulting β must be larger in dense re-
gions and smaller in sparser ones. We sort the

points x1, . . . ,xN according to the distance to their

kth nearest neighbor. This gives a sequential order.

True β Dist. to Kth neighbor

 

 

0

125

250

375

500

 

 

5

8

11

14

MST

6 Experimental evaluation

1. 512 × 512 Lena image. Each data point is a
pixel represented by spatial and range fea-

tures (i, j, L, u, v) ∈ R
5 where (i, j) is the pixel

location and (L, u, v) the pixel value (overall

N = 262 144 points in D = 5 dimensions).

2. 60 000 handwritten digits from the MNIST dataset.

Each datapoint is a 28× 28 grayscale image.

3. 30 991 articles from Grolier’s encyclopedia. Each
point is a word count of the most popular words

from 30 991 articles.

Original Lena image Resulting β values

 

 

0.05

0.1

0.15

0.2

0.25

0.3

Bisection: > 10 min. Our method: 1 min.

Computing just the affinities given βs: 20 s.

Runtime Average # of iterations # of points converged after i iterations

L
e

n
a

10
1

10
2

10
3

O
ra

cl
e

M
ST DK

R
as

te
r

Bou
nd

s

R
an

do
m

10
1

10
2

O
ra

cl
e

M
ST DK

R
as

te
r

Bou
nd

s

R
an

do
m 10

0
10

1
10

20

1

2x 10
5

 

 

i

Euler
Newton
Halley

Ridder
Brent
Bisect.

M
N

IS
T

10
1

10
2

O
ra

cl
e

M
ST DK

Bou
nd

s

R
an

do
m

10
0

10
1

10
2

O
ra

cl
e

M
ST DK

Bou
nd

s

R
an

do
m 10

0
10

1
10

20

2

4x 10
4

i

G
ro

ile
r

10
0

10
1

10
2

O
ra

cl
e

M
ST DK

Bou
nd

s

R
an

do
m

10
0

10
1

10
2

O
ra

cl
e

M
ST DK

Bou
nd

s

R
an

do
m 10

0
10

1
10

20

1

2x 10
4

i

7 Conclusions
We studied the properties and computation of entropic affinities. Using (1) root-finding methods with high-order convergence, (2) warm-start initialization

based on local or density orders, and (3) bounds for the root, we find the root almost to machine precision in just over one iteration per point on average.

In applications such as spectral clustering and embeddings, semi-supervised learning, etc. using entropic affinities should give better results than fixing
the bandwidth to a single value or using a rule-of-thumb. You just need to give the global perplexity value K.

MATLAB code: http://eecs.ucmerced.edu. Run it simply like [W,s] = ea(X,K) Partially supported by NSF CAREER award IIS–0754089.

http://eecs.ucmerced.edu

