Partial-Hessian Strategies for Fast Learning of Nonlinear Embeddings

Max Vladymyrov and Miguel Á. Carreira-Perpiñán

Electrical Engineering and Computer Science University of California, Merced

https://eecs.ucmerced.edu

June 29, 2012

つへへ

K ロ ▶ → 御 ▶ → 臣 ▶ →

Introduction

We focus on graph-based dimensionality reduction techniques:

- \blacktriangleright Input is a (sparse) affinity matrix.
- \triangleright Objective function is a minimization over the location of the latent points.
- ► Examples:
	- Spectral methods: Laplacian Eigenmaps (LE), LLE;
		- ✓ have a closed-form solution;
		- X results are often not satisfactory.
	- Nonlinear methods: SNE, s-SNE, t-SNE, elastic embedding (EE);

✓ produce good quality embedding;

✗ notoriously slow to train, limited to small data sets.

One reason for slow training is inefficient optimization algorithms that take many iterations and move very slowly towards a solution.

COIL-20 Dataset

Rotations of 10 objects every 5°; input is greyscale images of 128 \times 128.

3

We are proposing a new training algorithm that:

- \triangleright generalizes over multiple algorithms (s-SNE, t -SNE, EE);
- \triangleright fast (1-2 orders of magnitude compared to current techniques);

4

イロト 不優 ト 不重 ト 不重 トー 重

- \blacktriangleright allows deep, inexpencive steps;
- \triangleright scalable to larger datasets;
- \triangleright intuitive and easy to implement.

General Embedding Formulation (Carreira-Perpiñán 2010)

For $\mathbf{Y} = (\mathbf{y}_1, \dots, \mathbf{y}_N) \in \mathcal{R}^{D \times N}$ matrix of high-dimensional points and $\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_N) \in \mathbb{R}^{d \times N}$ matrix of low-dimensional points, define an objective function:

 $E(\mathsf{X},\lambda)=E^+(\mathsf{X})+\lambda E^-(\mathsf{X}) \qquad \lambda\geq 0$

- E^+ is the attractive term:
	- \triangleright often quadratic,
	- \triangleright minimal with coincident points;
- E^- is the repulsive term:
	- \triangleright often very nonlinear,
	- \triangleright minimal with points separated infinitely.

Optimal embeddings balance both forces.

Example: SNE (Hinton & Roweis 2003)

Define P_n and Q_n as distributions for each data point over the neighbors in high- and low-dimensional spaces respectively:

$$
p_{nm} = \frac{\exp(-\frac{\|\mathbf{y}_n - \mathbf{y}_m\|^2}{\sigma^2})}{\sum_{k=1, k \neq n}^N \exp(-\frac{\|\mathbf{y}_n - \mathbf{y}_m\|^2}{\sigma^2})}; \quad q_{nm} = \frac{\exp(-\|\mathbf{x}_n - \mathbf{x}_m\|^2)}{\sum_{k=1, k \neq n}^N \exp(-\|\mathbf{x}_n - \mathbf{x}_m\|^2)}
$$

The goal is to position points **X** such that P_n matches the Q_n for every *n*:

$$
E_{SNE}(\mathbf{X}) = \sum_{n=1}^{N} D(P_n || Q_n)
$$

=
$$
\sum_{n,m=1}^{N} p_{nm} \log \frac{p_{nm}}{q_{nm}} = -\sum_{n,m=1}^{N} p_{nm} \log q_{nm} + C
$$

=
$$
\sum_{n,m=1}^{N} p_{nm} ||\mathbf{x}_n - \mathbf{x}_m||^2 + \sum_{n=1}^{N} \log \sum_{m \neq n} \exp(-||\mathbf{x}_n - \mathbf{x}_m||^2) + C
$$

=
$$
E^+(\mathbf{X}) + \lambda E^-(\mathbf{X})
$$
 (In this formulation $\lambda = 1$)

Optimization Strategy

Look for a search direction \mathbf{p}_k at iteration k as a solution of a linear system ${\bf B}_k {\bf p}_k = -{\bf g}_k$, where ${\bf g}_k$ is the current gradient and ${\bf B}_k$ is a partial Hessian matrix.

 ${\bf B}_k = {\bf I}$ (grad. descent) $\xrightarrow[\text{aster convergence rate}]{\text{most} \atop} {\bf B}_k = \nabla^2 E$ (Newton's method)

We want B_k :

- \triangleright contain as much information about the Hessian as possible;
- ▶ positive definite (pd) ;
- \triangleright fast to solve the linear system and scale up to larger N.

After \mathbf{p}_k is obtained, a line search algorithm finds the step size α for the next iteration $\mathbf{X}_{k+1} = \mathbf{X}_k + \alpha \mathbf{p}_k$. We used backtracking line search.

8

KORKØRKERKER E 1990

Structure of the Hessian of the Generalized Embedding

Given a symmetric matrix of weights W, we can always define its degree matrix $\textbf{D}=$ diag $\left(\sum_{n=1}^{N} w_{nm}\right)$ and its graph Laplacian $\textbf{L}=\textbf{D}-\textbf{W}.$ L is positive semi-definite (psd) when entries of W are non-negative.

The $Nd \times Nd$ Hessian can be written in terms of certain graph Laplacians:

Thus, there are several choices for psd parts of the Hessian:

- \blacktriangleright The best choice depends on the problem.
- \triangleright \triangleright \triangleright We focus in particular on the one that doe[s g](#page-7-0)[en](#page-9-0)e[ral](#page-8-0)[ly](#page-9-0) [w](#page-0-0)el[l.](#page-0-0)

9

The Spectral Direction (definition)

$$
\nabla^2 E = 4L \otimes I_d + 8L^{xx} - 16\lambda \text{ vec} (\mathbf{XL}^q) \text{ vec} (\mathbf{XL}^q)^T
$$

$$
\mathbf{L}^+ - \lambda \mathbf{L}^-
$$

 $\mathbf{B}_k = 4 \mathsf{L}^+ \otimes \mathsf{I}_d$ is a convenient Hessian approximation:

- ► equal to the Hessian of the spectral methods: $\nabla^2 E^+({\bf X});$
- ighthrow always psd \Rightarrow global convergence under mild assumptions;
- \blacktriangleright block-diagonal and has d blocks of $N\times N$ graph Laplacian 4L⁺;
- constant for Gaussian kernel. For other kernels we can fix it at some X;
- \triangleright "bends" the gradient of the nonlinear E using the curvature of the spectral $E^+;$

The Spectral Direction (computation)

We need to solve a linear system $\mathbf{B}_k \mathbf{p}_k = \mathbf{g}_k$ efficiently for every iteration (naively $\mathcal{O}(N^3d)$).

- \blacktriangleright Cache the (also sparse) Cholesky factor of L^+ in the first iteration. Now, there are just two triangular systems for each iteration.
- ► For scalability, we can make W^+ even more sparse than it was with a κ -NN graph $(\kappa \in [1, N]$ is a user parameter). This affects only the runtime, convergence is still guaranteed.
- ► \mathbf{B}_k is psd \Rightarrow add small constant μ to the diagonal elements.

This strategy adds almost no overhead when compared to the objective function and the gradient computation. **KORKAR KERKER STARA**

The Spectral Direction (pseudocode)

SpectralDirection(\mathbf{X}_0 , \mathbf{W}^+ , κ) (optional) Further sparsify W^+ with κ -NN graph $L^+ \leftarrow D^+ - W^+$ Compute graph Laplacian $O(N)$ $\mathsf{R} \leftarrow \text{chol}(\mathsf{L}^+ + \mu \mathsf{I})$ $\phi^++\mu$ l $)$ compute Cholesky decomposition $\mathcal{O}(N^2\kappa)$ $k \leftarrow 1$ repeat Compute E_k and \mathbf{g}_k Objective function and the gradient $\mathcal{O}(N^2 d)$ $\bm{{\mathsf{p}}}_k \gets -\bm{\mathsf{R}}^{-\mathsf{\mathcal{T}}}(\bm{\mathsf{R}}$ Solve two triangular systems $O(N\kappa d)$ $\alpha \leftarrow$ backtracking line search $X_k \leftarrow X_{k-1} + \alpha p_k$ $k \leftarrow k + 1$ until stop return X

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B}$

Experimental Evaluation: Methods Compared

- Gradient descent (GD) , (Hinton&Roweis,'03)
- Diagonal methods:
	- ► fixed-point iterations (FP), $B_k = 4D^+ \otimes I_d$ (Carreira-Perpiñán,'10)
	- ► the diagonal of the Hessian ($DiagH$); **B**_k =
- Our methods:
	- ► spectral direction (SD) ;
	- \blacktriangleright partial Hessian SD–, solve linear system with conjugate gradient;
- Standard large-scale methods:
	- \triangleright nonlinear Conjugate Gradient (CG);
	- \blacktriangleright L-BFGS.

$$
\mathbf{B}_k = 4\mathbf{L}^+ \otimes \mathbf{I}_d
$$

$$
\mathbf{B}_k = 4\mathbf{L}^+ \otimes \mathbf{I}_d + 8\lambda \mathbf{L}_{i*,i*}^{xx}
$$

4 0 3 4

$$
\mathbf{B}_k=\mathbf{I}
$$

$$
=4\mathbf{D}^+\otimes\mathbf{I}_d+8\lambda\mathbf{D}^{xx}
$$

$$
\overline{\mathbf{a}} \rightarrow \overline{\mathbf{a}} \rightarrow \mathbf{a} \overline{\mathbf{a}} \rightarrow \overline{\mathbf{a}} \rightarrow 0 \mathbf{a} \mathbf{a}
$$

COIL-20. Convergence to the same minimum, EE

Initialize X_0 close enough to X_{∞} so that all methods have the same initial and final points.

14

メ都 トメミトメミト

COIL-20. Convergence from random initial X, s-SNE

Run the algorithms 50 times for 20 seconds each with different initialization.

MNIST. t-SNE

 $N = 20000$ images of handwritten digits (each a 28 \times 28 pixel grayscale image, $D = 784$). 1 hour of optimization.

MNIST. Embedding after 1 hour of t-SNE optimization

Animation

 QQ ミメスミメ \square

17

Conclusions

- ► We presented a common framework for many well-known dimensionality reduction techniques.
- ► We showed the role of graph Laplacians in the Hessian and derived several partial Hessian optimization strategies.
- ▶ We presented the **spectral direction**: a new simple, generic and scalable optimization strategy that runs one to two orders of magnitude faster compared to traditional methods.
- ▶ The evaluation of E and ∇E remains the bottleneck $(\mathcal{O}(N^2d))$ that can be addressed in the future works (e.g. with Fast Multipole Methods).
- ▶ Matlab code: https://eng.ucmerced.edu/people/vladymyrov/.

Partially supported by NSF CAREER award IIS–0754089.