Partial-Hessian Strategies for Fast Learning of Nonlinear Embeddings Max Vladymyrov and **Miguel A. Carreira-Perpi ´ n ˜ an ´** EECS, School of Engineering, University of California, Merced

Stochastic neighbor embedding (SNE) and related nonlinear manifold learning algorithms achieve high-quality low-dimensional representations of similarity data, but are notoriously slow to train. We propose a generic formulation of embedding algorithms that includes SNE and other existing algorithms, and study their relation with spectral methods and graph Laplacians. This allows us to define several partial-Hessian optimization strategies, characterize their global and local convergence, and evaluate them empirically. We achieve up to two orders of magnitude speedup over existing training methods with a strategy (which we call the **spectral direction**) that adds nearly no overhead to the gradient and yet is simple, scalable and applicable to several existing and future embedding algorithms. We search for a descent search direction as a solution to $B_k \mathbf{p}_k = -\mathbf{g}_k$, where \mathbf{g}_k is the gradient at iteration k and B_k is a pd matrix. We want B_k to be a psd part of the Hessian such that it contains as much Hessian information as possible, it is fast to compute and it scales up to larger N . Given a graph Laplacian $\mathbf{L} = \mathbf{D} - \mathbf{W}$ with $\mathbf{D} = \text{diag}\left(\sum_{n=1}^N w_{nm}\right)$ \setminus matrix (L is psd if the entries of W are non-negative). Then the Hessian of generalized embeddings is a $Nd \times Nd$ matrix given by: $\nabla^2 E = 4\mathbf{L}\otimes \mathbf{I}_d + 8\mathbf{L}^{xx} - 16\lambda \operatorname{vec}\left(\mathbf{XL}^q\right)\operatorname{vec}\left(\mathbf{XL}^q\right)^T$ where I_d is the $d \times d$ identity matrix, and the weights of corresponding graph Laplacians depend on the particular method: w_{nm} w \hat{xx}

1 **Abstract**

For $\mathbf{Y} \in \mathbb{R}^{D \times N}$ - high-dimensional data set and $\mathbf{X} \in \mathbb{R}^{d \times N}$ its its lowdimensional projection we can formulate several well-known dimensionality reduction techniques as:

where E^+ is an attractive term, often quadratic psd and minimal with coincident points, and E^- is a repulsive term, often nonlinear and minimal when points separate infinitely. Special cases include:

- **Symm. Stochastic Neighbor Embedding (s-SNE)** and t**-SNE** define a posterior probability distributions P and Q in X and Y spaces resp. for a given kernel function $K(||{\bf x}_n-{\bf x}_m||^2)$. The objective function minimizes the KL divergence between the two (λ) is equal to 1).
- **Elastic Embedding (EE)** goes without distributions and is simpler.
- **Laplacian Eigenmaps (LE)** and **Locally Linear Embedding (LLE)** minimize only attractive term (equivalent to $\lambda = 0$), but add quadratic constraints to eliminate the trivial solution $X = 0$.

2 **General Embedding Formulation**

Call $d_{nm} = {\left\| {{{\bf{x}}_n} - {{\bf{x}}_m}} \right\|^2}$. Then, the objective functions can be reformulated as :

$$
E(\mathbf{X}; \lambda) = E^{+}(\mathbf{X}) + \lambda E^{-}(\mathbf{X}) \qquad \lambda \ge 0
$$

The partial Hessian constructed from the attractive Hessian ${\bf B}_k = \nabla^2 E^+ ({\bf X}) =$ $4{\bf L}^+{\otimes}{\bf I}_d$ compromises the best between deep descent and efficient computation, and yields what we call the spectral direction:

- it guaranties to be globally convergent from any initialization.
- \bullet it is block-diagonal and consists of d identical blocks of $N\times N$ graph Laplacian $\mathbf{L}^{+};$
- it is constant for Gaussians kernels and can be made constant for other kernels, thus it is computed just once for all iterations and values of homotopy parameter λ ;
- we can further sparsify L^+ through κ nearest-neighbor graph: $\kappa=N;{\bf B}_k={\bf L}$ $+$ more sparsity $\kappa = 0; \mathbf{B}_k = \mathbf{D}^+$ **return** X

s-SNE:
$$
E^+ = \sum_{n,m=1}^N p_{nm} d_{nm}
$$
 $E^- = \log \sum_{n,m=1}^N e^{-d_{nm}}$
\nt-SNE: $E^+ = \sum_{n,m=1}^N p_{nm} \log (1 + e^{-d_{nm}}) E^- = \log \sum_{n,m=1}^N (1 + e^{-d_{nm}})^{-1}$
\nEE: $E^+ = \sum_{n,m=1}^N w_{nm}^+ d_{nm}$ $E^- = \sum_{n,m=1}^N w_{nm}^- e^{-d_{nm}}$
\nLE & LLE: $E^+ = \sum_{n,m=1}^N w_{nm}^+ d_{nm}$ $E^- = 0$

Experimental Evaluation

3 **Partial-Hessian Strategies**

Note that in both cases the weights p_{nm} and q_{nm} as well as w_{nm}^+ and w_{nm}^- are always positive and $w_{in,jm}^{xx}$ has a constant sign for $i=j$.

4 **The Spectral Direction**

In the experiments we compared: gradient descent (GD), fixed-point diagonal iterations (FP), the diagonal of the full Hessian (DiagH), spectral direction (SD), partial Hessian (SD–), nonlinear Conj. Grad. (CG) and L-BFGS;

- we precompute the Cholesky factorization $4L^+ = R^T R$ for $\mathcal{O}(\frac{1}{3}N^3)$ and then solve two triangular systems $\mathbf{R}^T(\mathbf{R}\mathbf{p}_k) = -\mathbf{g}_k$ for every iteration $k\,\left(\mathcal{O}(N^2d)\right)$. This is much faster than solve the linear system $(\mathcal{O}(N^3d))$ for each iteration;
- we "bend" the exact gradient of the nonlinear E using the curvature of the spectral $E^\pm.$

6 **Conclusions**

- We presented general formulation of such methods as **SNE**, **s-SNE**, t**-SNE**, **EE**, **LE** and **LLE**, and also suggest new ones.
- We showed the role of graph Laplacians in the gradient and Hessian, and derived several partial-Hessian optimization strategies.
- We presented a new simple, generic and scalable optimization strategy based on the Cholesky factors of the (sparsified) attractive Laplacian. The preferred method is able to achieve 1–2 orders of magnitude speed-up compared to traditional methods.
- Matlab implementation is available online at authors' websites.

Partially supported by NSF CAREER award IIS–0754089.

