
Conclusion

Introducti
on

Results

References
● Schmidhuber, J. Learning to control fast-weight memories: An alternative to dynamic recurrent networks. Neural Computation 1992.
● Garg, S., Tsipras, D., Liang, P., and Valiant, G. What can transformers learn in-context? a case study of simple function classes. In Oh,

A. H., Agarwal, A., Belgrave, D., and Cho, K. (eds.), NeurIPS, 2022.
● Akyurek, E., Schuurmans, D., Andreas, J., Ma, T., and ¨ Zhou, D. What learning algorithm is in-context learning? investigations with

linear models. ICLR, 2023.

Transformers Learn In-Context by Gradient Descent
Johannes von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev, Andrey Zhmoginov, Max Vladymyrov

Self-Attention Layer

Link to the paper and codeGoal & Hypothesis
Understand better Transformers and especially their intriguing in-context
learning capability.
● Garg et al.2 and Akyürek et al.3: trained Transformers on few-shot learning

tasks often resemble gradient descent.
● Our goal: to explain this phenomenon by building on the relationship

between self-attention and fast weight programming [Schmidhuber, 1992]1.
Contributions:

1) Construction of linear attention weights equivalent to do steps of GD on
linear regression.

2) Evidence that this construction is found in practice
3) Show how MLPs in the architecture enables solving non-linear tasks
4) Relax assumption of construction by showing Transformers learn to copy

Copying data together
Most of the results in the paper assume tokens consist of concatenated
inputs and targets. To relax this assumption, we show that Transformers
can learn to construct this on their own to implement GD.

Analyses of GD++
Transformers iteratively transform the input data X while simultaneously
doing GD steps. This leads to a change of the loss hessian H and therefore
faster learning by better conditioned optimization problems.

Linearization of softmax self-attention
Multi-head softmax self-attention layers can linearize themselves to
approximate a step of GD in a similar fashion.

Main Insights & Construction
Linear attention, if presented with correctly pre-processed data, can
implement a step of gradient descent on the squared error regression loss.
Compare GD

1) Compute regression loss:

2) Gradient descent:

3) Trick: Update all y:

4) Correct test prediction :

1) Assume token construction of copied data:

2) Update tokens by linear self-attention:

3) Can implement GD:

and linear Self-Attention GD

How Transformers can solve linear regression tasks
We present several pieces of evidence for the hypothesis that our construction is
equivalent to what a trained transformer actually learns.
1) Trained single linear self-attention layer

2) Trained Transformer of 5 linear self-attention layers

Multi layer Transformer outperform plain gradient descent and iteratively transform
the input data X, as well as the targets Y with GD. We term this algorithm GD++

Key takeaway: When trained on linear regression taks, multi-layer linear self-attention
Transformers implement GD, GD++ or behave very similarly.

How Transformers can solve non-linear regression tasks
We hypothesize and provide some evidence that Transformers exploit MLPs to
non-linearly embed data and solve non-linear regression tasks by gradient descent.

Construction
We show that the weights of a single layer of self attention can be hand-chosen in
order to perform exactly one step of gradient descent

Setting

Self-Attention

