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Goal & Hypothesis

Understand better Transformers and especially their intriguing in-context
learning capability.
e Garg et al.? and Akyurek et al.?: trained Transformers on few-shot learning
tasks often resemble gradient descent.
e Our goal: to explain this phenomenon by building on the relationship
between self-attention and fast weight programming [Schmidhuber, 1992]".
Contributions:
1) Construction of linear attention weights equivalent to do steps of GD on
linear regression.
2) Evidence that this construction is found in practice
3) Show how MLPs in the architecture enables solving non-linear tasks
4) Relax assumption of construction by showing Transformers learn to copy
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Main Insights & Construction

Linear attention, if presented with correctly pre-processed data, can

Qtest — te(wt65t7 {(x“ yz)qj,\il })
where vy; = Wx;
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implement a step of gradient descent on the squared error regression loss.
Compare GD

N
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1) Compute regression loss: L(W, {(zi,4:)}L1) = 5: (Wi — y:)’
1=1
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2) Gradientdescent: AW = —nVw L = —]7\7[ Z(W"Ei — y;)xl
1=1
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3) Trick: Update ally: L(W + AW, {(z;,v:)}Y) = L(W, {(zi, y; — AW z;)}]

4) Correct test prediction: Ytest <= —1 - Ytest = —1 - Z — AW Ztest
and linear Self-Attention GD

1) Assume token construction of copied data: e; = (x;, y;)
2) Update tokens by linear self-attention: €; < e; + PVK "' g;

3) Canimplement GD: (Zi, yi) < (zi, yi) — (0, N Z(W%‘ ~

How Transformers can solve linear regression tasks

We present several pieces of evidence for the hypothesis that our construction is
equivalent to what a trained transformer actually learns.

1) Trained single linear self-attention layer
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2) Trained Transformer of 5 linear self-attention layers
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Multi layer Transformer outperform plain gradient descent and iteratively transform
the input data X, as well as the targets Y with GD. We term this algorithm GD++

(i, yi) + (zi,y1) — (VXX 2, AW ;)

Key takeaway: When trained on linear regression taks, multi-layer linear self-attention

Transformers implement GD, GD++ or behave very similarly.

How Transformers can solve non-linear regression tasks

We hypothesize and provide some evidence that Transformers exploit MLPs to
non-linearly embed data and solve non-linear regression tasks by gradient descent.
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Transformers Learn In-Context by Gradient Descent
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Copying data together

Most of the results in the paper assume tokens consist of concatenated
inputs and targets. To relax this assumption, we show that Transformers
can learn to construct this on their own to implement GD.

Link to the paper and code
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Analyses of GD++

Transformers iteratively transform the input data X while simultaneously
doing GD steps. This leads to a change of the loss hessian H and therefore
faster learning by better conditioned optimization problems.

L; < Tj — vXXTmi
H=XX"=UxU" vs H'" =UZ — 2792* + 4*2U*
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Linearization of softmax self-attention

Multi-head softmax self-attention layers can linearize themselves to
approximate a step of GD in a similar fashion.
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