ETHzurich

Goal & Hypothesis

Understand better Transformers and especially their intriguing in-context
learning capability.
e Garg et al.? and Akyurek et al.?: trained Transformers on few-shot learning
tasks often resemble gradient descent.
e Our goal: to explain this phenomenon by building on the relationship
between self-attention and fast weight programming [Schmidhuber, 1992]".
Contributions:
1) Construction of linear attention weights equivalent to do steps of GD on
linear regression.
2) Evidence that this construction is found in practice
3) Show how MLPs in the architecture enables solving non-linear tasks
4) Relax assumption of construction by showing Transformers learn to copy

Setting

T -

0.00 ° *—:

C Self-Attention Layer

Main Insights & Construction

Linear attention, if presented with correctly pre-processed data, can

Qtest — te(wt65t7 {(x“ yz)qj,\il })
where vy; = Wx;

i Y

implement a step of gradient descent on the squared error regression loss.
Compare GD

N
. 1
1) Compute regression loss: L(W, {(zi,4:)}L1) = 5: (Wi — y:)’
1=1

N
2) Gradientdescent: AW = —nVw L = —]7\7[Z(W"Ei — y;)xl
1=1

(4

3) Trick: Update ally: L(W + AW, {(z;,v:)}Y) = L(W, {(zi, y; — AW z;)}]

4) Correct test prediction: Ytest <= —1 - Ytest = —1 - Z — AW Ztest
and linear Self-Attention GD

1) Assume token construction of copied data: e; = (x;, y;)
2) Update tokens by linear self-attention: €; < e; + PVK "' g;

3) Canimplement GD: (Zi, yi) < (zi, yi) — (0, N Z(W%‘ ~

How Transformers can solve linear regression tasks

We present several pieces of evidence for the hypothesis that our construction is
equivalent to what a trained transformer actually learns.

1) Trained single linear self-attention layer

0.40 -

0.35 -

)

3 0.30 1
el

0.25

0.20

- - 0.85
'_Hf 0'80

= Preds diff = Model cos
Model diff 1.00
-
0.95 o
Q
£
0.90 »v
o
@)

__J

2.5
— D

w—sTrained TF 204
€ 15-

@)

=
N 1.0+
0.5
: : 0.0

0 2000 4000

Training steps

0 1000 2000 3000 4000 500
Training steps

2) Trained Transformer of 5 linear self-attention layers

0.4 -

0

m— (5D
= GD**5 steps
wesTrained TF

L2 Norm

20000 40000
Training steps

GD vs trained TF

2073 i
= Model cos 102
1.5 4 | 11,00 _
\ -~
. = Preds diff [0.95
== Model diff =
\\ - 0.90 4
0.5 -
' -0.85
0.0 - T v 0.80
0 20000 40000

Training steps

1.04{ ¥ GD ¥
e Interpolated
0.84 == Trained TF
&
0 0.6 -
O
—
0.4 ¥
021 ¥
5 10 20 35 50
Num datapoints / Input dim
5 0 GD** vs trained TF
2 - 1.
= Model cos 02
1.5 4 | i——g - 1.00
. 7~ £
- — ec (095 YV
10 Preds diff @
< Model diff =
N -0.90 &
Q
0.5
- 0.85
0.0 0.80

0 20000

40000
Training steps

Multi layer Transformer outperform plain gradient descent and iteratively transform
the input data X, as well as the targets Y with GD. We term this algorithm GD++

(i, yi) + (zi,y1) — (VXX 2, AW ;)

Key takeaway: When trained on linear regression taks, multi-layer linear self-attention

Transformers implement GD, GD++ or behave very similarly.

How Transformers can solve non-linear regression tasks

We hypothesize and provide some evidence that Transformers exploit MLPs to
non-linearly embed data and solve non-linear regression tasks by gradient descent.

0.6 1

0.4 1

0.2

0.0

—0.2 1

—0.4 -

Tr. TF init

GD init
— GD step 1

-—= GT
* Data

—— Tr. TF step 1

0.0067 »
= GD

0.005 === Trained TF

0.004 -
8 0.003 -
—

0.002 1

0.001 ~

0.000 = . .
0 20000 40000

Training steps

0.087 |
l - Partial cosine
--------------------------------------- 1.0
0.06 A " -
c et 0.9 £
-
S 0.04 £ 0.8 2
N wn
= —~— 0.7 8
0.02 A
= Preds diff L 0.6
Partial diff
0.00 -+ . - 0.5
0 20000 40000

Training steps

Transformers Learn In-Context by Gradient Descent

GO g I e Resea rCh Johannes von Oswald, Eyvind Niklasson, Ettore Randazzo, Joao Sacramento, Alexander Mordvintsev, Andrey Zhmoginov, Max Vladymyrov

ICML

Infernational Conference
On Machine Learning

¢
Copying data together

Most of the results in the paper assume tokens consist of concatenated
inputs and targets. To relax this assumption, we show that Transformers
can learn to construct this on their own to implement GD.

Link to the paper and code

0.55 - 3.5
== (D 1 step n XL
| | 7
230 == TF 2 layers ,“2’ S0 .
0.45 - T 2,51 Yi
g — Jt(e; .
» 0.40 - @ 2.0- IELEY/IE)
3 © ot(ej)/oej+1
| h [)
S e Self-Attention
0.30 - c 1.0 A
—
0.25 1 2 0.5
0.20 = , . T , 0.0 L r—— A—
0 10000 20000 30000 40000 0 10000 20000 30000 40000 ¢ oo L yz

Training steps Training steps

Analyses of GD++

Transformers iteratively transform the input data X while simultaneously
doing GD steps. This leads to a change of the loss hessian H and therefore
faster learning by better conditioned optimization problems.

L; < Tj — vXXTmi
H=XX"=UxU" vs H'" =UZ — 2792* + 4*2U*

0 - Hessian eigenvalue change Condition number change due to y

105? |

h

i
|
|
|
|
|
X - | I
IOZ?W
i |}
] |
101 - . '
EAL
1 < — N=100

10° -
0.00 0.05 010 0.15 0.20
Y

|
] |
104 4 :
|

IR 3

A, Y)=A—=2yA2 + y2A3

Linearization of softmax self-attention

Multi-head softmax self-attention layers can linearize themselves to
approximate a step of GD in a similar fashion.

MmWi ko + N2W2 ko

mwWi, ko n2Ws, xo

0.40
w— GD

== Trained TF
0.35 A

3 0.30 1
—

0.25 L

0.20 — . . T .
0 2500 5000 7500 10000

Training steps

OO H WN =
A — | —

N =
LCO~NOOTUKEBEWNH-

b ot
FOWOUOONOOULEWN M
AL S e R e e S e

IIIIIIIIIII

1234567891011 1234567 8 91011

1234567891011

References

Schmidhuber, J. Learning to control fast-weight memories: An alternative to dynamic recurrent networks. Neural Computation 1992.
Garg, S., Tsipras, D., Liang, P., and Valiant, G. What can transformers learn in-context? a case study of simple function classes. In Oh,
A. H., Agarwal, A., Belgrave, D., and Cho, K. (eds.), NeurlIPS, 2022.

Akyurek, E., Schuurmans, D., Andreas, J., Ma, T., and ~ Zhou, D. What learning algorithm is in-context learning? investigations with
linear models. ICLR, 2023.

