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Spectral dimensionality reduction methods

Given high-dim data points YD×N = (y1, . . . ,yN), find low-dim points
Xd×N = (x1, . . . ,xN), with d ≪ D, as the solution of the following
optimization problem:

min
X

tr
(
XAXT

)
s.t. XBXT = I.

❖ AN×N : symmetric psd, contains information about the similarity
between pairs of data points (yn,ym)
User parameters: number of neighbours k, bandwidth σ, etc.

❖ BN×N : symmetric pd (usually diagonal), sets the scale of X.

Examples:

❖ Laplacian eigenmaps: A = graph Laplacian
Also: spectral clustering

❖ Isomap: A = shortest-path distances

❖ Kernel PCA, multidimensional scaling, LLE, etc.
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Computational solution with large-scale problems

Solution: X = UTB− 1

2 , where U = (u1, . . . ,ud) are the d trailing
eigenvectors of the N ×N matrix C = B− 1

2AB− 1

2 . With large N ,
solving this eigenproblem is infeasible even if A and B are sparse.

Goal of this work: a fast, approximate solution for the embedding X.

Applications:

❖ When N is so large that the direct solution is infeasible.

❖ To select hyperparameters (k, σ. . . ) efficiently even if N is not large
since a grid search over these requires solving the eigenproblem many times.

❖ As an out-of-sample extension to spectral methods.

p. 2



Computational solution with large-scale problems (cont.)

The Nyström method is the standard way to approximate large-scale
eigenproblems. Essentially, an out-of-sample formula:

1. Solve the eigenproblem for a subset of points (landmarks)
Ỹ = ỹ1, . . . , ỹL, where L ≪ N .

2. Predict x for any other point y through an interpolation formula:

xk =

√
L

λk

L∑

l=1

K(y, ỹl) ulk k = 1, . . . , d

Problems:

❖ Needs to know the interpolation kernel K(y,y′) (sometimes tricky).

❖ It only uses the information in A about the landmarks, ignoring the
non-landmarks. This requires using many landmarks to represent
the data manifold well. If too few landmarks are used:
✦ Bad solution for the landmarks X̃ = x̃1 . . . , x̃L

✦ . . . and bad prediction for the non-landmarks.
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Locally Linear Landmarks (LLL)

Assume each projection is a locally linear function of the landmarks:

xn =
∑L

l=1
zlnx̃l, n = 1, . . . , N ⇒ X = X̃Z

Solving the original eigenproblem of N ×N with this constraint results
in a reduced eigenproblem of the same form but of L× L on X̃:

min
X̃

tr
(
X̃ÃX̃T

)
s.t. X̃B̃X̃T = I

with reduced affinities Ã = ZAZT , B̃ = ZBZT . After X̃ is found, the
non-landmarks are predicted as X = X̃Z (out-of-sample mapping).

Advantages over Nyström’s method:

❖ The reduced affinities Ã = ZAZT involve the entire dataset and
contain much more information about the manifold that the
landmark–landmark affinities, so fewer landmarks are needed.

❖ Solving this smaller eigenproblem is faster.

❖ The out-of-sample mapping requires less memory and is faster.
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LLL: reduced affinities

Affinities between landmarks:

❖ Nyström (original affinities): A ⇒ aij ⇒ path i—j.

❖ LLL (reduced affinities): Ã = ZAZT ⇒ ãij =
∑N

n,m=1
zinanmzjm ⇒

paths i—n—m—j ∀n,m.
So landmarks i and j can be farther apart and still be connected
along the manifold.

Affinities between. . .

Dataset All points Landmarks
(Nyström)

Landmarks
(LLL)
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LLL: construction of the weight matrix Z

❖ Most embedding methods seek to preserve local neighbourhoods
between the high- and low-dim spaces.

❖ Hence, if we assume that a point may be approximately linearly
reconstructed from its nearest landmarks in high-dim space:

yn ≈ ∑L

l=1
zlnỹl, n = 1, . . . , N ⇒ Y ≈ ỸZ

the same will happen in low-dim space: X ≈ X̃Z.

❖ We consider only the KZ nearest landmarks, d+ 1 ≤ KZ ≤ L. So:
1. Find the KZ nearest landmarks of each data point.

2. Find their weights as Z = argminZ ‖Y − ỸZ‖2 s.t. ZT1 = 1.
These are the same weights used by Locally Linear Embedding (LLE) (Roweis & Saul 2000).

❖ This implies the out-of-sample mapping (projection for a test point)
is globally nonlinear but locally linear: x = M(y)y where matrix
M(y) of d×D depends only on the set of nearest landmarks of y.
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LLL: computational complexity

❖ We assume the affinity matrix is given.
If not, use approximate nearest neighbours to compute it.

❖ Time: the exact runtimes depend on the sparsity structure of the
affinity matrix A and the weight matrix Z, but in general the time is
dominated by:
✦ LLL: finding the nearest landmarks for each data point
✦ Nyström: computing the out-of-sample mapping for each data

point
and this is O(NLD) in both cases.
Note LLL uses fewer landmarks to achieve the same error.

❖ Memory: LLL and Nyström are both O(Ld).
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LLL: user parameters

❖ Location of landmarks: a random subset of the data works well.
Refinements such as k-means improve a little with small L but add runtime.

❖ Total number of landmarks L: as large as possible.
The more landmarks, the better the result.

❖ Number of neighbouring landmarks KZ for the projection matrix Z:
KZ & d+ 1, where d is the dimension of the latent space.
Each point should be a locally linear reconstruction of its KZ nearest landmarks:

✦ KZ landmarks span a space of dimension KZ − 1 ⇒ KZ ≥ d+ 1.

✦ Having more landmarks protects against occasional collinearities, but decreases the locality.
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LLL: algorithm

Given spectral problem minX tr
(
XAXT

)
s.t. XBXT = I for dataset Y:

1. Choose the number of landmarks L, as high as your computer can
support, and KZ & d+ 1.

2. Pick L landmarks ỹ1, . . . , ỹL at random from the dataset.

3. Compute local reconstruction weights ZL×N for each data point wrt
its nearest KZ landmarks:

Z = argmin
Z

‖Y − ỸZ‖2 s.t. ZT1 = 1.

4. Solve reduced eigenproblem

min
X̃
tr (X̃ÃX̃T ) s.t. X̃B̃X̃T = I with Ã = ZAZT , B̃ = ZBZT

for the landmark projections X̃.

5. Predict non-landmarks with out-of-sample mapping X = X̃Z.
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Experiments: Laplacian eigenmaps

We apply LLL to Laplacian eigenmaps (LE) (Belkin & Niyogi, 2003):

❖ A: graph Laplacian matrix L = D−W for a Gaussian affinity matrix
W =

(
exp

(
−‖(yn − ym)/σ‖2

))
nm

on k-nearest-neighbour graph.

❖ B: degree matrix D = diag (
∑N

m=1
wnm).

minX tr
(
XLXT

)
s.t. XDXT = I, XD1 = 0.

LLL’s reduced eigenproblem has Ã = ZLZT , B̃ = ZDZT .

We compare LLL with 3 baselines:

1. Exact LE runs LE on the full dataset.
Ground-truth embedding, but the runtime is large.

Landmark LE runs LE only on a set of landmark points. Once their
projection is found, the rest of the points are embedded using:

2. LE(Nys.): out-of-sample mapping using Nyström’s method.

3. LE(Z): out-of-sample mapping using reconstruction weights.
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Experiments: effect of the number of landmarks

❖ N = 60 000 MNIST digits, project to d = 50, KZ = 50 landmarks.

❖ Choose landmarks randomly, from L = 50 to L = N .

LLL produces an embedding with quite lower error than Nyström’s
method for the same number of landmarks L.
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Experiments: effect of the number of landmarks (cont.)

Embeddings after 5 s runtime:

Exact LE, 80 s. LLL, 5 s. LE (Z), 5 s. LE (Nys.), 5 s.
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Experiments: model selection in Swiss roll dataset

Vary the hyperparameters of Laplacian eigenmaps (affinity bandwidth σ,
k-nearest-neighbour graph) and compute for each combination the relative error of
the embedding X wrt the ground truth on N = 4000 points using L = 300 landmarks.
Matrix Z need only be computed once.
The minima of the model selection error curves for LLL and Exact LE align well.

10
−4

10
−2

10
0

10
2

R
un

tim
e

10
0

10
110

−2

10
−1

 

 

Bandwidth σ (for k = 150)

E
rr

or Exact LE
LLL
LE (Z)
LE (Nys.)

10
1

10
2

10
3

# neighbours k (for σ = 1.6)p. 13



Experiments: model selection in classification task

Find hyperparameters to achieve low 1-nn classification error in MNIST.

❖ 50 000 points as training, 10 000 as test, 10 000 as out-of-sample.

❖ Project to d = 500 using LLL (KZ = 50, L = 1 000).

In runtime, LLL is 15–40× faster than Exact LE. The model selection
curves align well, except eigs in Exact LE fails to converge for small k.

Exact LE test error (%) LLL test error (%)
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Experiments: large-scale dataset

❖ N = 1 020 000 points from infiniteMNIST.

❖ L = 104 random landmarks (1%), KZ = 5.

LLL (18’ runtime) LE(Z)
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Experiments: large-scale dataset (cont.)

The reason for the improved result with LLL is that it uses better
affinities, so the landmarks are better projected.

Landmarks with
LLL reduced affinities

Landmarks with
original affinities
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Conclusions

❖ The basic reason why LLL improves over Nyström’s method is that,
by using the entire dataset, it constructs affinities that better
represent the manifold for the same number of landmarks.

❖ Hence, it requires fewer landmarks, and is faster at training and test
time.

❖ It applies to any spectral method.
No need to work out a special kernel as in Nyström’s method.

❖ LLL can be used:
✦ to find a fast, approximate embedding of large dataset
✦ to do fast model selection
✦ as an out-of-sample extension to spectral methods.

❖ Matlab code: http://eecs.ucmerced.edu.
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