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Spectral dimensionality reduction methods

Given high-dim data points Ypxn = (y1,-.-,yn~), find low-dim points
Xaxn = (x1,...,Xn), With d < D, as the solution of the following
optimization problem:

I Anyn: Symmetric psd, contains information about the similarity

between pairs of data points (y,., y.)
User parameters: number of neighbours k, bandwidth o, etc.

I Byxn: Symmetric pd (usually diagonal), sets the scale of X.
Examples:

| Laplacian eigenmaps: A = graph Laplacian
Also: spectral clustering

| Isomap: A = shortest-path distances
| Kernel PCA, multidimensional scaling, LLE, etc.
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Computational solution with large-scale problems

Solution: X = UTB~z, where U = (uy, .. .1,ud) are the d trailing
eigenvectors of the V x N matrix C = B 2AB 2. With large NV,
solving this eigenproblem is infeasible even if A and B are sparse.

Applications:
I When N is so large that the direct solution is infeasible.

I To select hyperparameters (k, o...) efficiently even if N is not large
since a grid search over these requires solving the eigenproblem many times.

I As an out-of-sample extension to spectral methods.
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Computational solution with large-scale problems (cont.)

The Nystrom method is the standard way to approximate large-scale
eigenproblems. Essentially, an out-of-sample formula:

1. Solve the eigenproblem for a subset of points (landmarks)
Yz?l,...,§L,WhereL<< N.

2. Predict x for any other point y through an interpolation formula:
VI < _
fL’k:—ZK(yaYl)ch k=1,...,d

Problems:
1 Needs to know the interpolation kernel K (y,y’) (sometimes tricky).

[]

If too few Iagdmarks are used:
"I Bad solution for the landmarks X = x; ..., Xy,
I ...and bad prediction for the non-landmarks.
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Locally Linear Landmarks (LLL)

Assume each projection is a locally linear function of the landmarks:
L e
Xp =) 4 4mX,n=1....N =

Solving the original eigenproblem of N x N with this constraint results
In a reduced eigenproblem of the same form but of L x L on X:

with reduced affinities , . After X is found, the
non-landmarks are predicted as (out-of-sample mapping).

Advantages over Nystrom’s method:

0 The reduced affinities A = ZAZ” involve the entire dataset and
contain much more information about the manifold that the
landmark—landmark affinities, so fewer landmarks are needed.

| Solving this smaller eigenproblem is faster.
I The out-of-sample mapping requires less memory and is faster.
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LLL: reduced affinities

Affinities between landmarks:
L1 Nystrom (original affinities): A = a;; = path i—j.
[ LLL (reduced affinities): A = ZAZT = Gy; = Y 0 1 ZinGnmZjm =
paths i—n—m—j Vn, m.
So landmarks ¢ and 5 can be farther apart and still be connected
along the manifold.

Affinities between. ..

Dataset All points ERLMELS Landmarks
i (Nystrom) (LLL)




LLL: construction of the weight matrix Z

1 Most embedding methods seek to preserve local neighbourhoods
between the high- and low-dim spaces.

I Hence, if we assume that a point may be approximately linearly
reconstructed from its nearest landmarks in high-dim space:

L P
VoY 2wy, n=1....N =

the same will happen in low-dim space:

I We consider only the K, nearest landmarks, d +1 < K, < L. So:
1. Find the K, nearest landmarks of each data point.
2. Find their weights as Z = argming |Y — YZ||* s.t. Z71 = 1.
These are the same weights used by Locally Linear Embedding (LLE) (Roweis & Saul 2000).

"I This implies the out-of-sample mapping (projection for a test point)

IS globally nonlinear but locally linear: where matrix
M(y) of d x D depends only on the set of nearest landmarks of y.

p. 6



LLL: computational complexity

I We assume the affinity matrix is given.
If not, use approximate nearest neighbours to compute it.

I Time: the exact runtimes depend on the sparsity structure of the

affinity matrix A and the weight matrix Z, but in general the time is
dominated by:

I LLL: finding the nearest landmarks for each data point

I Nystrom: computing the out-of-sample mapping for each data
point

and this is In both cases.
Note LLL uses fewer landmarks to achieve the same error.

I Memory: LLL and Nystrom are both
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LLL: user parameters

[1 Location of landmarks: a random subset of the data works well.
Refinements such as k-means improve a little with small L but add runtime.

[1 Total number of landmarks L: as large as possible.
The more landmarks, the better the result.

I Number of neighbouring landmarks K for the projection matrix Z:

Kz 2 d—+ 1, where d is the dimension of the latent space.
Each point should be a locally linear reconstruction of its K nearest landmarks:

I Kz landmarks span a space of dimension Ky — 1 = Kz > d + 1.

] Having more landmarks protects against occasional collinearities, but decreases the locality.
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Given spectral problem minx tr (XAX") s.t. XBX” =1 for dataset Y:

1. Choose the number of landmarks L, as high as your computer can
support, and K, = d + 1.

2. Pick L landmarks yq, ...,y at random from the dataset.

3. Compute local reconstruction weights Z; . for each data point wrt
Its nearest K, landmarks:

Z = argmin |[Y ~ YZ|* st. 2”1 =1.

4. Solve reduced eigenproblem

~

ming tr (XAXT) s.t. XBX” = I with A = ZAZ”, B = ZBZ"

for the landmark projections X.
5. Predict non-landmarks with out-of-sample mapping X = XZ.
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Experiments: Laplacian eigenmaps

We apply LLL to Laplacian eigenmaps (LE) (Belkin & Niyogi, 2003):
I A: graph Laplacian matrix L = D — W for a Gaussian affinity matrix
W = (exp (= ||(y» — ¥ym)/c|)), on k-nearest-neighbour graph.

1 B: degree matrix D = diag (>, _, Wnm)-

~

LLLs reduced eigenproblem has A = ZLZ” B = ZDZ".

We compare LLL with 3 baselines:

1. runs LE on the full dataset.
Ground-truth embedding, but the runtime is large.

Landmark LE runs LE only on a set of landmark points. Once their
projection is found, the rest of the points are embedded using:

2. . out-of-sample mapping using Nystrom’s method.
3. . out-of-sample mapping using reconstruction weights.

p. 10



Experiments: effect of the number of landmarks

I N = 60000 MNIST digits, project to d = 50, K, = 50 landmarks.
I Choose landmarks randomly, from L =50to L = V.
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Experiments: model selection in Swiss roll dataset

Vary the hyperparameters of Laplacian eigenmaps (affinity bandwidth o,
k-nearest-neighbour graph) and compute for each combination the relative error of
the embedding X wrt the ground truth on N = 4 000 points using L = 300 landmarks.

Matrix Z need only be computed once.
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Experiments: model selection in classification task

Find hyperparameters to achieve low 1-nn classification error in MNIST.
] 50000 points as training, 10000 as test, 10 000 as out-of-sample.
] Project to d = 500 using LLL (K7 = 50, L = 1000).

In runtime, LLL is 15—40x faster than Exact LE. The model selection
curves align well, except eigs in Exact LE fails to converge for small £.

Exact LE test error (%) LLL test error (%)

6 11 19 34 62 111 200 6 11 19 34 62 111 200

k




Experiments: large-scale dataset

1 N = 1020000 points from infiniteMNIST. A ¥ I3
1 L = 10* random landmarks (1%), K, = 5.

LLL (18’ runtime) LE(Z)




Landmarks with
original affinities

Landmarks with
LLL reduced affinities




Conclusions

I The basic reason why LLL improves over Nystrom’s method is that,
by using the entire dataset, it constructs affinities that better
represent the manifold for the same number of landmarks.

I Hence, it requires fewer landmarks, and is faster at training and test
time.

I It applies to any spectral method.

No need to work out a special kernel as in Nystrom’s method.

I LLL can be used:
I to find a fast, approximate embedding of large dataset
I to do fast model selection
"I as an out-of-sample extension to spectral methods.

| Matlab code: http://eecs.ucmerced.edu.
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