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47 LOCALLY LINEAR LANDMARKS
(112 FOR LARGE-SCALE MANIFOLD LEARNING

Max Vladymyrov and Miguel A. Carreira-Perpinan. EECS, UC Merced, USA

1 3 Locally Linear Landmarks for 1. Number of landmarks
Abstract Laplacian Eigenmaps The role of number of landmarks on the performance of LLL:
Spectral methods for manifold learning and cluster-  we can apply LLL to Laplacian Eigenmaps (LE) al- * YS€ 60000 MNIST digits.
ing typically construct a graph weighted with affini-  gorithm (Belkin & Niyogi, 2003). In this case: e Reduce the dimensionality to d = 50.
ties (e.g. Gaussian or shortest-path distances) froma 4 A - graph Laplacian matrix I = D — W for a sym- *Set K = 50, chose landmarks randomly and increase their
dataset and compute eigenvectors of a graph Lapla- metric affinity matrix W with degree matrix D =  humber logarithmically from L = 50 to L = 60 000.
cian. With large datasets, the eigendecomposition is diag (ZN ” ) « Compute the error between the embeddings with Exact LE.
too expensive, and is usually approximated by solving m=) s
for a smaller graph defined on a subset of the points ~ *B - degree matrix D. | 0.8
(landmarks) and then applying the Nystrdm formula to min tr (XLX") ,s.t. XDX' =T, XD1 = 0. N ) e
estimate the elgenvectors over all points. This has the Using (2) the coefficients of the model becomes: o0 R
problem that the affinities between landmarks do not E __—- ExactLE || S04
benefit from the remaining points and may poorly rep- A=71L7Z", B=7ZDZ. €100 LLL | 5
resent the data if using few landmarks. We introduce oC —— LE (Z) 0.2
a modified spectral problem that uses all data points 4_ _ 4| LE (Nys.) |
by constraining the latent projection of each point to Properties of LLL L N
oo 2 locl Incar unclion of 0 endaks ISTLO0 ™1 o mtrc 7, Wo e o keep . angs Mol andmaks Nombor i araars
landmarks that preserves manifold structure even with marks closest to y,. Solve the optimization prob- Exact LE, 80 s. ,5.5s.
few landmarks and allows one to reduce the eigenpro- lem: _
blem size and works specially well when the desired min |[Y - YZ|, s.t. 1'Z=1".
number of eigenvectors is not trivially small. The so-  For the solution (a) compute a local Gram matrix
lution also provides a nonlinear out-of-sample projec- Gy = (y» — ¥i)(yn — ¥;), (b) solve a linear system
tion mapping that is faster and more accurate than the > i Girze = 1 and (c) rescale the weights so
Nystrom formula. they sum to one.
2.Location of landmarks. The landmarks should
2 be spread as uniformly as possible along the man-
Spectral methods ifol_d to provide local reconstruction. It can be done
using:
Given the input data points Y € R”*", the generalized e centroids of clustering algorithm (e.g. k-means);
spectral problem seeks a solution X € R to a following e greedy algorithm (e.g. MinMax algorithm; de
optimization problem: ) Silva & Tenenbaum, 2004);
min tr (XAX') s.t. XBX' =1 (1) o random subset of the data.
e A - symmetric positive semidefinite matrix, usually repre- 3. Total number of landmarks L. The more land-
sents the similarity between data points, marks we can afford, the better is the final result.
: e Co . : better approximation ..
e B - symmetric positive definite matrix, typically represents L < N (approx.) » L = N (original),

slower

the scale of the points with respect to each other. 4. Number of landmarks i, for the projection ma-

: : : 1 - : -
he solution is given by X = U; B, where U, = (uj, ..., uy) trix Z. Each point should be a locally linear recon-
are d trailing eigenvectors of a N x N matrix C = B 2AB2. struction of the nearby landmarks:
It is too costly to find the solution when N and d are large. e Few landmarks = inexact reconstruction.

e oo many landmarks =- lose locality.
Practically, choosing K, ~ d works well.

3 Locally Linear Landmarks (LLL)

Define: 5 Experimental Evaluation 2. Model selection
oY = (yi,...,yr) € Rt a set of L landmarks chosen from |
the data set Y. We compare LLL for LE to three baselines: Use LLL to predict the parameters of the affinity matrix:
oZ = (z1,...,2zy) € RN |ocal projection matrix, which cor-  1.Exact LE runs LE on the full dataset. Best em- e Use 4000 points from swiss roll dataset.
responds to the proximity of the points in the dataset to bedding, but the runtime is large. e Vary parameters of the algorithm (bandwidth o, number of
nearby landmarks. 2.Landmark LE runs LE only on a set of landmark  landmarks L and sparsity Ky of the affinity matrix A) and
Now, we can express each point as a linear combination points. Once their projection is found, the rest of = compute the relative error of the embedding with respect to
of K, nearby landmarks: vy, = fol vz, We assume the points are embedded using: the ground truth.
that the transformation between landmarks and the rest of e LE(Z): Z as an out-of-sample.
the points is preserved in both high- and low-dimensional e LE(Nys.): Nystrom method as an out-of-sample. GEHOZ T |
spaces, i.e. X = XZ. Substituting this into the spectral -E.l(’: | 1 e /f
problem (1) gives reduced spectral problem: . D::—,lo | R - | *
10-4 — |
mNin tr (X:&XT) . S.1. XEXT =1, (2) ) ’ ﬁ}/j}.i&.&f—{ il ek L“*"‘*“"“_QA‘“"—’\_Z;\T— B E__-/ T-.;;;fii;;—;i-ji‘;f_T\—;,_\tzcigq;s_z_::*J
. ~ ~ . . . ~ i 0L 10 1A I 110 LN __/-:—Tj S il = 5
with A = ZAZ', B = ZBZ'. The solution is given by X = 1 S Tl // EI)_(ECt LE | ____-\Dl\, V|
UZB~2, where U, are d trailing eigenvectors of the matrix | o Y E@ T =20 LG Ty
C =B AB™. ] LE (Nys.)
1.AfterN§Z is found, the values of X can be recovered using | 4| 05 00 100 10 100" 1 10
X = XZ. i 5| g L Ky
2. Dramatic cost reducthn: the total costis O (N(Kzc+ Ld + _ 6| 3. Large-scale: 106 points from infinite MNIST
DK%) + L*) where ¢ is a constant that depends on the 7
sparsity of A and B. i 8 |
3. New similarity matrix A takes into account the whole dataset Y ﬂﬂ
and can dramatically improve the quality of similarity ma- i 1
Dataset A A
R e Generate 1020000 handwritten digits using elastic transforma-

10; 0.5

l tion to the MNIST digits (see Loosli et al., 2007).
1
e Use K, =5and L = 10000 randomly selected landmarks.
e It tooOk 4.2 minutes to compute Z and 14 minutes to compute
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s T i Io_lls I Conclusions the embedding.
10 o 20— 20 S 0 The bottleneck of spectral methods is expensive eigenvalue decomposi-
4. Matrix Z can be used as a cheep out-of-sample extension tion. We propose to optimize only for a small set of landmark points, while
- ) L retaining the structure of the whole data. The algorithm can be used (1)
with cost O(D K7 + Ld) per point: . . .
f , fing o . to find a fast approximate embedding of large dataset, (2) as a model pa- t ant a
’ |Or§‘ nevll/ point yo? Ind a projection vector z, UsINg Kz rameters selection method, (3) as an out-of-sample extension to spectral
dnamarks around yo. methods. For the Laplacian Eigenmaps the algorithm is able to achieve International Conference on Machine Learning

e the embedding x, Is found using landmark projection of 1 _ o)« speed-up with small approximation error.
the training set: x, = Xz Partially supported by NSF CAREER award [15-075408



