

Continual HyperTransformer: A Meta-Learner for Continual Few-Shot Learning

Goal

Propose a few-shot continual hypernetwork model:

- Few-shot: learning from few samples
- Continual: learning without forgetting.
- Hypernetwork: learning on the fly (no training!).

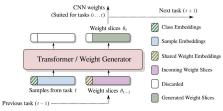
Motivation

While useful for many machine learning applications (e.g. robotics, privacy-preserving training), we argue that the combination above suggests a an appealing framework for modeling the biological learning systems, such as the brain [1]. As humans, we are able to learn directly (hypernetwork) from few examples (few-shot) without forgetting what we have learned before (continual).

Model

HyperTransformer [2] is a few-shot hypernetwork that is able to generate weights for the custom CNN model on the fly from a few labeled examples. It works by decoupling the complexities of the model generator (via a Transformer) and the generated model (via a CNN).

We want to extend it to incremental setting, by using the weights generated for the previous tasks as input when trained for the new task.



Learning with Prototypes

In order to separate learning classes from different tasks, use prototypical loss:

Accumulate prototypes for the support set

$$c_{\tau k} = \frac{1}{N} \sum_{(x,y) \in S^{(\tau)}} f_{\theta_{\tau}}(x) \mathbf{1}_{y=k}$$

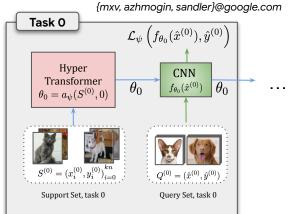
Compute the softmax over the query set
 Task-incremental learning:

$$p(\hat{y} = k | \hat{x}, \tau) = \frac{\exp(-\|f_{\theta_t}(\hat{x}) - c_{\tau k}\|^2)}{\sum_{k'} \exp(-\|f_{\theta_t}(\hat{x}) - c_{\tau k'}\|^2)}$$
 Class-incremental learning:

class-incremental realising. $\exp(-\|f_{\theta_t}(\hat{x}) - c_{\tau k}\|^2)$

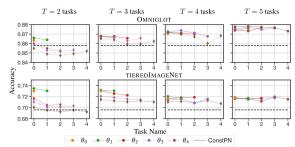
$$p(\hat{y} = k, \tau | \hat{x}) = \frac{\exp(-\|f_{\theta_t}(\hat{x}) - c_{\tau k}\|^2)}{\sum_{\tau' k'} \exp(-\|f_{\theta_t}(\hat{x}) - c_{\tau' k'}\|^2)}$$

Max Vladymyrov, Andrey Zhmoginov, Mark Sandler

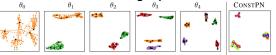


Task-incremental learning

Given task_id, predict class_id.



UMAP of the embedding layer



Class-incremental learning

Predict both task id and class id.

Support Set, task t

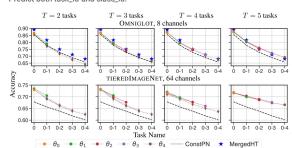
Hyper

Transformer

 $\theta_t = a_{\psi}(S^{(t)}, \theta_{t-1})$

Task t

 θ_{t-1}



 $\sum_{\tau=0}^{t} \mathcal{L}_{\psi} \left(f_{\theta_t}(\hat{x}^{(\tau)}), \hat{y}^{(\tau)} \right)$

CNN

 $\{f_{\theta_t}(\hat{x}^{(\tau)})\}_{\tau=0}^t$

Query Set, all tasks seen so far

References

- [1] Miller, E.K. and Cohen, J.D. An integrative theory of prefrontal cortex function. Annual review of neuroscience, 24(1), 2001, pp.167-202.
- [2] Zhmoginov, A., Sandler, M. and Vladymyrov, M., Hypertransformer: model generation for supervised and semi-supervised few-shot learning, ICML 2022.