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e Few-shot : learning from few samples

° : learning without forgetting. T T‘
e Hypernetwork : learning on the fly (no training!). H H
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While useful for many machine learning applications (e.g. robotics, 0 v ? © 4 o=l

privacy-preserving training), we argue that the combination above suggests a an
appealing f k for deling the biological learning sy , such as the
brain [1]. As humans, we are able to learn directly (hypernetwork) from few
examples (few-shot) without forgetting what we have learned before ( ).

Model

HyperTransformer [2] is a few-shot hypernetwork that is able to generate weights
for the custom CNN model on the fly from a few labeled examples. It works by

decoupling the ities of the model (via a Transformer) and the
generated model (via a CNN). Support Set, task 0 Query Set, task 0 Support Set, task ¢ Query Set, all tasks seen so far

We want to extend it to incremental setting, by using the weights generated for the
previous tasks as input when trained for the new task.
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In order to separate learning classes from different tasks, use prototypical loss: oestmvr—o-vr v L 41 - o A oo e 4 e 4 e =
o 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 01 02 03 04 0 01 02 03 04 0 01 02 03 04 0 01 02 03 04
e Accumulate prototypes for the support set Task Name Task Name
Crk = % (eyyeser fo, (@) 1y=k © 6 6 6 e 63 e 65 — ConstPN o 6 o 6, o 6, o 6 o 6 ConstPN % MergedHT
. Compute the softmax over the query set U MAP of the embedding Iayer
o Task-incremental learning: o 0, 0y 05 0, CONSTPN References
i = exp(—lfo T gt (s G i ' < [1] Miller, E.K. and Cohen, J.D. An integrative theory of prefrontal cortex function. Annual review
- exp(=lfo, ¥ ¥ a A of neuroscience, 24(1), 2001, pp.167-202
° Class-incremental learning: ¥ g g + PP- ]
b= korls) = exp(—||fo, (&) — crkl®) ; 3 » e ¥ « [2] Zhmoginoy, A., Sandler, M. and Vladymyrov, M., Hypertransformer: model generation for
P = krld) = ok exp(—|| fo, (&) — crrpe||?) -ﬂg ¥ L Q i supervised and semi-supervised few-shot learning, ICML 2022.



