
Supplementary material for:

Linear-time training of nonlinear low-dimensional embeddings

Miguel Á. Carreira-Perpiñán and Max Vladymyrov

Electrical Engineering and Computer Science, University of California, Merced

{mcarreira-perpinan, mvladymyrov}@ucmerced.edu

February 21, 2014

1 Fast Gauss Transform approximation

The fast Gauss transform (FGT; Greengard and Strain, 1991) uses the idea of the fast multipole methods (FMM)
to compute approximately in linear time the Gaussian interaction between the points xn ∈ R

d, n = 1, . . . , N of
the form

Q(xn) =

N∑

m=1

qm exp(−‖(xn − xm)/σ‖2). (1)

The algorithm starts by normalizing the points to lie in the unit hypercube and dividing the space into boxes
of side

√
2σr, where r < 1/

√
2 is a user parameter. Then, there exist three different ways to compute the

approximation to (1) (cf. fig. 2 from our main paper):

• We can use a Hermite expansion for each box B (with center sB) and evaluate it for all target points t1:

Q(t) =
∑

B

∑

α<p

AB
αhα

(t− sB

σ

)
+ ǫH(p), (2)

where AB
α = 1

α!

∑
sj∈B qj(

sj−sB

σ
)α and ǫH(p) is a known error term, defined below.

• For every source point in a box B we can we can form a Taylor series of the target points t in the nearby
boxes C with corresponding centers tC :

Q(t) =
∑

β<p

(
∑

B

CBC
β

)(t− tC

σ

)β
+ ǫT (p), (3)

where CBC
β = 1

β!

∑
sj∈B qjhβ(

sj−tC

σ
) and ǫT (p) is a known error term, defined below.

• We can further approximate (2) by expanding hα(t) as a Taylor series to get

Q(t) =
∑

β<p

(
∑

B

ĈBC
β

)(t− tC

σ

)β
+ ǫTH(p), (4)

where ĈBC
β = 1

β!

∑
α<p A

B
α(−1)|α|hα+β(

sB−tC

σ
) and ǫTH(p) is a known error term, defined below.

Computing multiindex sums over α and β scales as O(pdN), which is the bottleneck computation. The rest of
the computations add a linear cost to the algorithm and depend of the number of boxes included around every
source box B.

The choice of the method depends on the number of source points NB in a given box B and the number
of target points MC in a given box C. The user provides two cutoff parameters N̄B and M̄C . Now, one of the
following can occur:

1We use multi-index notation: α ≥ 0 ⇒ α1, . . . , αd ≥ 0; α! = α1! · · ·αd!; t
α = t

α1

1
· · · t

αd

d
for α ∈ N

d, t ∈ R
d.

1

• If NB < N̄B and MC < M̄C use exact evaluation (1).

• If NB < N̄B and MC ≥ M̄C use Hermite expansion (2).

• If NB ≥ N̄andB and MC < M̄C use Taylor expansion (3).

• If NB ≥ N̄B and MC ≥ M̄C use Hermite expansion followed by a Taylor expansion (4).

In the paper, for simplicity, we assume N̄B = M̄C = M0.
The approximation errors are given in Baxter and Roussos (2002) with an extended derivation from ?:

ǫH(p) ≤
∑N

m=1
qm

(1− r)d

d−1∑

k=0

(
d

k

)
(1 − rp)k

(
rp√
p!

)d−k

, (5)

ǫT (p) ≤
∑N

m=1
qm

(1− r)d

d−1∑

k=0

(
d

k

)
(1 − rp)k

(
rp√
p!

)d−k

, (6)

ǫTH(p) ≤ ǫT (p) +

∑N
m=1

qm

(1−
√
2r)2d

d−1∑

k=0

(
d

k

)
(1− (

√
2r)p)k

(
(
√
2r)p√
p!

)d−k

2

. (7)

2 A simple noise model

In order to understand the effect of noisy updates to an optimization algorithm, we will use a simple noise
model. At iteration k during the optimization of an objective function E(x) with x ∈ R

n, if using exact gradient
evaluations, we would move from the previous iterate xk−1 to the current one xk without error (for example,
for a gradient descent step, xk = xk−1 − η∇f(xk−1)). However, if using an inexact gradient, we would move to
xk + ǫk, incurring an error ǫk. In our case, ǫk is caused by using an approximate method and is a deterministic
function of xk−1 and the method parameters (θ for Barnes-Hut, p for fast multipole methods, etc.). Let us model
ǫk as a zero-mean Gaussian with variance σ2 in each dimension. The fundamental assumption is that, although
ǫk is deterministic at each iterate, over a sequence of iterates we expect it not to have a preferred direction (i.e.,
no systematic error). The value of σ corresponds to the accuracy level of the method, where σ = 0 means no
error (θ = 0, p → ∞). In practice, σ will be quite small. Then we have the following result.

Theorem 2.1. Let E(x) be a real function with x ∈ R
n. Call ∆E(x) and δE(x) the absolute and relative error,

respectively, incurred at point x ∈ R
n upon a perturbation of x that follows a Gaussian noise model N (0, σ2I).

Call µ∆(x) = 〈∆E(x)〉, v∆(x) =
〈
(∆E(x) − 〈∆E(x)〉)2

〉
, µδ(x) = 〈δE(x)〉 and vδ(x) =

〈
(δE(x) − 〈δE(x)〉)2

〉

the expected errors and their variances under the noise model. Assume E has derivatives up to order four that
are continuous and have finite expectations under the noise model. Call g(x) = ∇E(x) and H(x) = ∇2E(x) the
gradient and Hessian at that point, respectively, and JH(x) the n × n Jacobian matrix of the Hessian diagonal
elements, i.e., (JH(x))ij = ∂hii/∂xj = ∂3E(x)/∂x2

i ∂xj. Then, the expected errors and their variances satisfy,
∀x ∈ R

n:

µ∆(x) =
1

2
σ2 tr (H(x)) +O(σ4) v∆(x) = σ2 ‖g(x)‖2 + σ4

(
1

2
‖H(x)‖2F + 1TJH(x)g(x)

)
+O(σ6) (8)

µδ(x) =
µ∆(x)

E(x)
vδ(x) =

v∆(x)

E(x)2
. (9)

If ‖H(x)‖
2
≤ M ∀x ∈ R

n for some M > 0, then ∀x ∈ R
n:

|〈∆E(x)〉| ≤ 1

2
σ2nM. (10)

Proof. Throughout, we define 〈·〉 to be the expectation under the Gaussian noise model N (0, σ2I):

〈f(ǫ)〉 = (2πσ2)−
n
2

∫

Rn

f(ǫ) exp (ǫT ǫ/2σ2) dǫ.

In particular, we have:

〈ǫi〉 = 0,
〈
ǫ2i
〉
= σ2,

〈
ǫ4i
〉
= 3σ2 for i = 1, . . . , n; 〈f(ǫi)g(ǫj)〉 = 〈f(ǫi)〉 〈g(ǫj)〉 if i 6= j.

2

To prove expression (8), we expand E around x as a Taylor series to fourth order with remainder:

∆E(x) = E(x + ǫ)− E(x) = gT ǫ+
1

2
ǫTHǫ+

1

6

n∑

i,j,k=1

tijkǫiǫjǫk +
1

24

n∑

i,j,k,l=1

qijklǫiǫjǫkǫl (11)

where

g = ∇E(x), H = ∇2E(x), tijk =
∂3E(x)

∂xi∂xj∂xk

, qijkl =
∂4E(x+ ξǫ)

∂xi∂xj∂xk∂xl

are the corresponding derivatives (omitting the dependence on x to simplify the notation) and ξ ∈ (0, 1) depends
on ǫ. Let us now compute the expectation of each term in (11). The first- and third-order terms (on g and tijk)
vanish under the expectation because they are odd functions of at least one ǫi. For the second-order term, write the
Hessian in terms of its eigenvectors and eigenvalues as H = UΛUT with U orthogonal and Λ = diag (λ1, . . . , λn)
diagonal (by the spectral theorem), so we can change variables u = UT ǫ. Then its expectation is:

〈
1

2
ǫTHǫ

〉
= (2πσ2)−

n
2

∫

Rn

(
1

2
ǫTHǫ

)
exp (ǫT ǫ/2σ2) dǫ

= (2πσ2)−
n
2

∫

Rn

(
1

2
uTΛu

)
exp (uTu/2σ2) du

= (2πσ2)−
n
2

n∑

i=1

λi

∫

Rn

1

2
u2
i exp (u

Tu/2σ2) du

=

n∑

i=1

λi

〈
1

2
u2
i

〉
=

1

2
σ2

n∑

i=1

λi =
1

2
σ2 tr (H) .

The fourth-order term can be handled in a similar way and its expectation, which is finite by assumption, has
the form O(σ4). Hence 〈∆E(x)〉 = 1

2
σ2 tr (H(x)) +O(σ4).

For the variance of the absolute error we have
〈
(∆E(x) − 〈∆E(x)〉)2

〉
=
〈
(∆E(x))2

〉
− (〈∆E(x)〉)2. The

second moment has the form

〈
(∆E(x))2

〉
=

〈(
gT ǫ+

1

2
ǫTHǫ+

1

6

n∑

i,j,k=1

tijkǫiǫjǫk + higher-order terms

)2
〉

=
〈
ǫTggT ǫ

〉
+

1

4

〈
(ǫTHǫ)2

〉
+
〈
(gT ǫ)(ǫTHǫ)

〉
+

〈
1

3
(gT ǫ)

n∑

i,j,k=1

tijkǫiǫjǫk

〉
+ 〈higher-order terms〉 .

Again, the higher-order terms either vanish if they are odd, as is also the case for
〈
(gT ǫ)(ǫTHǫ)

〉
, or are assumed

to be integrable, and contribute a term O(σ6). The other three terms are as follows. For the first term we have:

〈
ǫTggT ǫ

〉
= σ2 tr

(
ggT

)
= σ2 ‖g‖2 .

For the second term:

1

4

〈
(ǫTHǫ)2

〉
=

1

4

〈
(uTΛu)2

〉
=

1

4

〈(n∑

i=1

λiu
2
i

)2
〉

=
1

4

〈
n∑

i,j=1

λiλju
2
iu

2
j

〉
=

1

4

n∑

i6=j

λiλj

〈
u2
iu

2
j

〉
+

1

4

n∑

i=1

λi

〈
u4
i

〉

=
1

4

n∑

i6=j

λiλj

〈
u2
i

〉 〈
u2
j

〉
+

1

4

n∑

i=1

λi

〈
u4
i

〉
=

1

4
σ4

((n∑

i=1

λi

)2

+ 2

n∑

i=1

λ2
i

)
=

1

4
σ4
(
tr (H)

2
+ 2 tr

(
Λ2
))

=
1

4
σ4
(
tr (H)2 + 2 ‖H‖2F

)

where we changed variables u = UT ǫ as above and used

‖H‖2F = tr
(
HTH

)
= tr

(
UΛUTUΛUT

)
= tr

(
Λ2
)
. (12)

For the fourth term, we have
〈
1

3
(gT ǫ)

n∑

i,j,k=1

tijkǫiǫjǫk

〉
=

1

3

N∑

l=1

gl

〈
ǫl

n∑

i,j,k=1

tijkǫiǫjǫk

〉
.

3

The lth expectation can be simplified as follows:

〈
ǫl

n∑

i,j,k=1

tijkǫiǫjǫk

〉
=

〈
ǫl

(
n∑

j,k=1

tljkǫlǫjǫk +

n∑

i6=l

n∑

j,k=1

tijkǫiǫjǫk

)〉
(13)

=

〈
ǫl

(
n∑

j,k=1

tljkǫlǫjǫk +

n∑

i6=l

[(
n∑

k=1

tilkǫiǫlǫk

)
+

(
n∑

j 6=l

n∑

k=1

tijkǫiǫjǫk

)])〉
(14)

=

〈
ǫl

(
n∑

j=1

tljjǫlǫ
2
j +

n∑

i6=l

(
tiliǫ

2
i ǫl + tiilǫ

2
i ǫl
)
)〉

(15)

=

〈
ǫ2l

(
n∑

i=1

tliiǫ
2
i +

n∑

i6=l

(tili + tiil)ǫ
2
i

)〉
(16)

=

〈
ǫ2l

(
tlllǫ

2
l +

n∑

i6=l

(tlii + tili + tiil)ǫ
2
i

)〉
(17)

= tlll
〈
ǫ4l
〉
+

(
n∑

i6=l

(tlii + tili + tiil)

)
〈
ǫ2l
〉2

(18)

= σ4

(
3tlll +

n∑

i6=l

(tlii + tili + tiil)

)
= σ4

n∑

i=1

(tlii + tili + tiil) (19)

= 3σ4

n∑

i=1

tiil = 3σ4(1TJH)l (20)

where in (13) we split the i summation into i = l and i 6= l, in (14) we split the j summation into j = l and
j 6= l, in (15) the odd terms vanish (so in the first term we must have k = j, in the second k = i and in the third
i = j 6= l and k = l), in (17) we split the first i summation into i = l and i 6= l, and in (20) tlii = tili = tiil holds
because the third derivatives are continuous (so we can exchange the derivative order). Hence the fourth term

equals σ41TJHg, and
〈
(∆E(x) − 〈∆E(x)〉)2

〉
= σ2 ‖g‖2 + 1

2
σ4 ‖H‖2F + σ41TJHg.

The formula for δE(x) = ∆E(x)/E(x) follows directly. To prove the bound (10), we apply a Taylor expansion
to second order with remainder:

∆E(x) = E(x+ ǫ)− E(x) = g(x)T ǫ+
1

2
ǫT∇2E(x+ ξǫ)ǫ

where ξ ∈ (0, 1) depends on ǫ. Proceeding as before:

〈∆E(x)〉 = (2πσ2)−
n
2

∫

Rn

(
1

2
ǫT∇2E(x + ξǫ)ǫ

)
exp (ǫT ǫ/2σ2) dǫ ⇒

|〈∆E(x)〉| ≤ (2πσ2)−
n
2

1

2

∫

Rn

∣∣ǫT∇2E(x+ ξǫ)ǫ
∣∣ exp (ǫT ǫ/2σ2) dǫ

≤ (2πσ2)−
n
2

1

2

∫

Rn

MǫT ǫ exp (ǫT ǫ/2σ2) dǫ =
1

2
σ2nM.

Note that the mean error in eq. (8) depends on the point x, i.e., the iterate where we apply the approximate
step, through the trace of the Hessian at that point (and the accuracy level σ, which we assume fixed by the
user). It does not depend on the gradient itself, because the linear term is an odd function that integrates to zero.
The formula for the mean error is accurate when σ is small, which means the accuracy in the gradient evaluation
is high. If the function E is quadratic, the formulas are exact. The bound for the mean error in eq. (10) is valid
at any iterate (i.e., it does not depend on x), but will typically be too coarse, and it also loses the information
about the sign of the error.

The formula for the mean error in eq. (8) has a simple geometric interpretation (see fig. 1): while a Gaussian
perturbation is symmetric in x-space, the value of E(x + ǫ) is not because of the curvature in E, so the average
of the E-error is not zero.

4

x

E(x)

x

E(x)

x

E(x)

Figure 1: The result of a Gaussian perturbation to a point x on the function E(x) in 1D. With positive mean
curvature (left), the perturbation is equally likely to move x to the left or to the right, but points to the right
have a larger, positive error in E, while points to the left have a smaller, negative error in E, and the net effect is
that the perturbed E value is larger than E(x) on average. With negative mean curvature (middle), the opposite
is true. With zero mean curvature (right), the perturbed E value is zero to first order.

0 20 40 60
0

0.2

0.4

0.6

0.8

1

E
(x

k
)

k

Ek

ek

Figure 2: Illustration of the objective function sequences Ek and ek for the optimization using exact and inexact
gradients, respectively. We use r = 0.9, µ = 0.01 and an initial E0 = e0 = 1. Ek converges to E∗ = 0 while ek
converges to e∗ = 0.1.

The behavior of the variance of the absolute error during the optimization can be characterized as follows.
The variance is, to first order, proportional to the squared gradient, so we expect large variations in the error in
early stages of the optimization. Near a minimizer, g(x) ≈ 0 and so the coefficient of variation of the absolute
error is √

v∆(x)

µ∆(x)
≈

√
2
‖H(x)‖F
tr (H(x))

=
√
2
‖λ(x)‖

2

‖λ(x)‖
1

∈
[√

2

n
,
√
2

]

since ‖x‖
1
/
√
n ≤ ‖x‖

2
≤ ‖x‖

1
∀x ∈ R

n, tr (H(x)) =
∑n

i=1
λi and, from eq. (12), ‖H(x)‖2F =

∑n
i=1

λ2
i , where

λ(x) = (λ1, . . . , λn)
T ≥ 0 are the eigenvalues of H(x). Thus, the coefficient of variation of the absolute error

is independent of the accuracy level σ and dependent only on the curvature. The ends of the interval above
occur when all the eigenvalues are equal (

√
2/n) or at most one eigenvalue is nonzero (

√
2). In practice, if n is

large we are likely to have many nonzero eigenvalues and thus be closer to the
√
2/n end, so the coefficient of

variation will be very small. Hence, near a minimizer we expect to see absolute errors with a near-constant value
of µ∆(x) =

1

2
σ2 tr (H(x)).

This allows us to characterize the behavior of the optimization near the minimizer. Assume that, if using exact
gradients, we converge linearly with rate 0 < r < 1, e.g. Ek+1 = rEk where Ek is the exact value of the objective
function E(xk) at iterate k (and we assume w.l.o.g. that Ek → E∗ = 0). Using the approximate gradients, the
sequence of objective function values is instead ek+1 ≈ rek +µ∆(xk) ≈ rek +µ, where µ = 1

2
σ2 tr (H(x∗)) and x∗

is the minimizer. We assume a high enough accuracy σ ≪ 1 so that µ ≪ 1 and convergence actually occurs. Then,
we have that ek → e∗ = µ

1−r
linearly with rate r. Indeed, for the limit we have ek+1 = e∗ = re∗ + µ ⇒ e∗ = µ

1−r
.

For the rate, we have:
|ek+1 − e∗|
|ek − e∗| =

rek + µ− µ
1−r

ek − µ
1−r

= r.

This means that, when using approximate gradients, the sequence of objective function values (ek) will seem to
converge, but will do so to a value e∗ that is larger than the optimal one E∗, and proportional to σ2. The iterates
xk will, of course, not converge but oscillate around x∗. Fig. 2 illustrates this.

5

2.1 Application to optimization of embeddings

While the previous noise model is probably too simple to make quantitative predictions, it does give important
qualitative predictions (always noting that σ must be small enough, i.e., the accuracy must not be too low): (1)
adding noise will be beneficial only where the mean curvature 1

n
tr
(
∇2E(x)

)
is negative; (2) when the mean

curvature is positive, the lower the accuracy the worse the optimization; (3) 〈∆E(x)〉 / tr
(
∇2E(x)

)
should take

an approximately constant value over iterates which is related to the accuracy level; and (4) ∆E(x) will vary
widely at the beginning of the optimization and become approximately constant and equal to 1

2
σ2 tr (H(x)) near

a minimizer. This in turn gives suggestions as to how to tune the accuracy (θ or p) during the optimization, as
follows.

Let us assume that the optimization algorithm decreases the objective function, at least on average (this means
the step sizes are sufficiently small and the accuracy sufficiently high), so that the optimization is effective. Thus,
we expect that the early iterates will move through a region that may have negative or positive mean curvature
(depending on the initialization and the objective function), but eventually they will move through a region of
positive mean curvature, as they approach a minimizer. Thus, a higher accuracy will be necessary in the later
stages of the optimization. As for the early stages, we can be more specific by looking at the Hessian trace for
some embedding models, whose form can be obtained from Vladymyrov and Carreira-Perpiñán (2012):

• For the elastic embedding (EE) (Carreira-Perpiñán, 2010): tr
(
∇2E(x)

)
= 4d tr (L), where L is the N ×N

graph Laplacian corresponding to the affinities in the input (high-dimensional) space and d is the dimension
of the low-dimensional space.

• For s-SNE, t-SNE and other normalized models: tr
(
∇2E(x)

)
= 4d tr (L) − 16λ ‖XLq‖2F , where Lq is a

N ×N graph Laplacian corresponding to the affinities learned in the low-dimensional space (see details in
Vladymyrov and Carreira-Perpiñán, 2012). The usual s-SNE (Hinton and Roweis, 2003; Cook et al., 2007)
and t-SNE (van der Maaten and Hinton, 2008) fix λ = 1.

For the graph Laplacian in the input space, we have tr (L) =
∑N

n6=m wnm, which is a positive constant. Thus, the
mean curvature is always positive for EE, so we do not expect the noise to help anywhere. For s-SNE and t-SNE,
the mean curvature can be negative if ‖XLq‖2F is large enough, but this will likely not happen if, as is commonly
done, one initializes X from small values. In summary, it seems unlikely that the mean curvature will be negative
during the optimization, and therefore the inexact steps caused by the Barnes-Hut or FMM methods will reduce
the objective less than exact steps on average. However, it is likely that the mean curvature will become more
positive as the optimization progresses, which suggests starting with a relatively low accuracy and increasing it
progressively.

It still may make sense to try to benefit from the noise whenever the mean curvature does become negative.
Since the Hessian trace for s-SNE and t-SNE can be computed in linear time in the number of parameters Nd in
the embedding X, one could detect when it is negative and use a very low accuracy in the gradient evaluations.

As noted above, if the accuracy is high enough, the objective function will decrease steadily and appear to
converge, even though the iterates are actually oscillating, and the objective function value we converge to is
larger than the optimal one (by a factor proportional to the accuracy). This again indicates that for convergence,
at least in a practical sense where we have to stop the optimization after a finite number of iterations with a finite
accuracy, as the optimization progresses the accuracy has to be increased as much as computationally feasible.
Upon stopping, we should expect the objective function to exceed the optimal one at least by a factor that is
proportional to the accuracy.

In theorem 2.1 we try to model, as generally as possible, how inexact gradients affect the convergence and the
decrease of the objective function E(x) in terms of local properties of E at the current iterate x (slope, curvature,
etc.). The theorem tries to be as independent as possible of the particular approximation method (FMM, BH,
etc.) and NLE (SNE, t-SNE, EE, etc.). In contrast, the FGT bound of Baxter and Roussos (2002) only applies
to Gaussian sums with the FGT method and is independent of the iterate x (it only depends on the number of
terms, dimension of latent space and box width). Hence, the FMM bound can be coarse, and does not distinguish
between early and late stages of the optimization, so it does not help to design adaptive schedules for the accuracy
level.

3 Embeddings using FGT and Barnes-Hut approximations

Fig. 3 shows the resulting embedding of 60 000 MNIST digits after one hour of optimization using L-BFGS.
The results of FGT and BH look much better than the one using exact computation. Fig. 4 shows additional

6

embeddings of the infiniteMNIST dataset using FGT.

References

B. J. C. Baxter and G. Roussos. A new error estimate of the fast Gauss transform. SIAM J. Sci. Comput., 24
(1), 257–259 2002.

M. Á. Carreira-Perpiñán. The elastic embedding algorithm for dimensionality reduction. In J. Fürnkranz and
T. Joachims, editors, Proc. of the 27th Int. Conf. Machine Learning (ICML 2010), pages 167–174, Haifa, Israel,
June 21–25 2010.

J. Cook, I. Sutskever, A. Mnih, and G. Hinton. Visualizing similarity data with a mixture of maps. In M. Meilă
and X. Shen, editors, Proc. of the 11th Int. Workshop on Artificial Intelligence and Statistics (AISTATS 2007),
San Juan, Puerto Rico, Mar. 21–24 2007.

L. Greengard and J. Strain. The fast Gauss transform. SIAM J. Sci. Stat. Comput., 12(1):79–94, Jan. 1991.

G. Hinton and S. T. Roweis. Stochastic neighbor embedding. In S. Becker, S. Thrun, and K. Obermayer, editors,
Advances in Neural Information Processing Systems (NIPS), volume 15, pages 857–864. MIT Press, Cambridge,
MA, 2003.

L. J. P. van der Maaten and G. E. Hinton. Visualizing data using t-SNE. J. Machine Learning Research, 9:
2579–2605, Nov. 2008.

M. Vladymyrov and M. Á. Carreira-Perpiñán. Partial-Hessian strategies for fast learning of nonlinear embeddings.
In J. Langford and J. Pineau, editors, Proc. of the 29th Int. Conf. Machine Learning (ICML 2012), pages 345–
352, Edinburgh, Scotland, June 26 – July 1 2012.

7

FGT Barnes-Hut

Exact

Figure 3: Embedding of 60 000 MNIST digits using FGT, BH and exact computation for L-BFGS optimization
(only a subset is shown).

8

Gradient descent Fixed-point iteration L-BFGS
E = 1.04× 107, 1 iter. E = 1.04× 107, 1 iter. E = 1.04× 107, 1 iter.

0
m
in

E = 1.01× 107, 24 iter. E = 4.77× 106, 36 iter. E = 1.99× 106, 23 iter.

1
0
m
in

E = 9.74× 105, 122 iter. E = 7.15× 105, 135 iter. E = 5.99× 105, 87 iter.

1
h
o
u
r

E = 5.54× 105, 634 iter. E = 4.64× 105, 683 iter. E = 4.82× 105, 425 iter.

6
h
o
u
rs

E = 5.34× 105, 1143 iter.E = 4.53e× 105, 1098 iter. E = 4.56× 105, 768 iter.

1
1
h
o
u
rs

Figure 4: Embeddings of 1 020 000 digits from infinite MNIST dataset with FGT using GD, FP and L-BFGS.
Shown are the resulting embedding in the beginning and after 10 min, 1 hour, 6 hours and 11 hours of optimization.

9

