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1 Abstract

Nonlinear embeddings such as stochastic neighbor embedding or
the elastic embedding achieve better results than spectral methods
but require an expensive, nonconvex optimization, where the objec-
tive function and gradient are quadratic on the sample size. We ad-
dress this bottleneck by formulating the optimization as an N-body
problem and using fast multipole methods (FMMs) to approximate
the gradient in linear time. We study the effect, in theory and exper-
iment, of approximating gradients in the optimization and show that
the expected error is related to the mean curvature of the objective
function, and that gradually increasing the accuracy level in the FMM
over iterations leads to a faster training. When combined with stan-
dard optimizers, such as gradient descent or L-BFGS, the result-
ing algorithm beats the O(N logN) Barnes-Hut method and achieves
reasonable embeddings for one million points in three hours.

2 Nonlinear Embedding Methods

Given the symmetric nonnegative affinity matrix W defined for a high-d
data set YD×N = (y1, . . . ,yN) nonlinear embeddings (NLE) find low-
d projection Xd×N = (x1, . . . ,xN) by minimizing: E(X;λ) = E+(X) +
λE−(X), with λ ≥ 0. For example, in the Elastic Embedding algorithm
the objective function and the gradient are given by:

EEE(X) =
∑N

n,m=1wnm ‖xn − xm‖
2 + λ

∑N
n=1S(xn),

GEE(X) = 4XL− 4λ
(

X diag (S(X)) + Sx(X)
)

.

where

S(xn) =

N
∑

m=1

exp(−‖xn − xm‖
2) and Sx(xn) =

N
∑

m=1

xm exp(−‖xn − xm‖
2).

•Vladymyrov and Carreira-Perpiñán (2012) achieve the best descent
per iteration for NLE methods. However, no matter how good is the
optimization algorithm, it still requires computation of the gradient for
every iteration.

•The bottleneck of NLE is the O(N 2) computation of S(xn) and Sx(xn)
that are represented by N -Body problem.

3 N -Body Methods

1. Tree-based methods Build a high-d tree around the dataset. Save
by replacing point-point interactions with node-point or node-node ones.
Complexity O(N logN). Focus on Barnes-Hut algorithm:

•Preprocess: build a quadtree around the dataset saving the center of
mass c for every cell.

•Query: for every point x traverse down the tree computing the size of
the current cell l and the distance to its centroid D. If l/D < θ ⇒ use
an interaction between x and c for all the points in that cell.

•Accuracy: controlled by θ. Bigger values ⇒ larger speed-up, also
larger error.
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2. Fast Multipole Methods Decouple xn and xm using a series expan-
sion:

Q(xn) =
∑N

m=1 qmK(‖(xn − xm)/σ‖
2) ≈

∑

α≥0

(

fα(xn)
∑N

m=1 gα(xm)
)

f and g are some functions and α is a multi-index notation α ≥ 0 ⇒ α1, . . . , αd ≥ 0.

Computation complexity is O(N).

•Preprocess: divide X into boxes. Many points ⇒ expand around the
center of mass.

•Query: (1) ignore interactions between distant boxes; (2) many points
per box ⇒ use center of mass, otherwise – compute exactly.

•Accuracy: controlled by the number of expansion p. More terms ⇒
more accurate expansion, larger runtime.

4 Optimization with inexact gradient

•Each iteration k incurs a small error ǫk.

•Model ǫk as zero-mean Gaussian noise N (0, ξ2I)
(assume non systematic error).

•Variance ξ2 is a model parameter that represents
the accuracy of the approximation.

E

∇E
xk

xk + ǫk

xk−1

•Mean of the error 〈E(X + ǫ)− E(X)〉 = 1
2ξ

2 tr
(

∇2E(X)
)

+O(ξ4).

We can make the following qualitative prediction:

•Adding noise is beneficial if the mean
curvature tr

(

∇2E(X)
)

is negative.

•Near the minimizer the mean curva-
ture is positive ⇒ no gains from the
approximation.

We suggest starting with relatively low
accuracy and increasing it progressively:

•Cheap initial iterations.

•Far from the minimizer ⇒ benefit from
the noise whenever the mean curva-
ture is negative.

•Analogous to simulated annealing ⇒ increasing the accuracy avoids
wandering behavior.

Input: (1) initial X0,
(2) sparse affinities W,
(3) non-decreasing accuracy
(p0, p1 . . . ),
(4) step size η.
for k = 0 to maxit do

eval. approx. gradient Gk

eval. direction Pk.
Xk+1 = Xk + ηPk.

end for

Role of changing the accuracy in inexact optimization

50 100 150 200

500

1000

1500

O
b
je

c
ti
ve

fu
n
c
ti
o
n

1 2 3 4 5 6 7 8 9 10

p =
12345678910

Iterations
0 10 20 30 40

 

 

Runtime, s

p = 3
p = 10
p = 10 → 1
p = 1 → 10

0 100 200 300 400 500
 

 

p = 1
p = 2

p = ∞

Iterations

Approximate
Exact

5 Experiments

• 1 020 000 points from infiniteMNIST.

•Elastic Embedding algorithm (λ = 10−4) optimized with gradient de-
scent (GD), fixed point iterations (FP) and L-BFGS.

•Fixed step size. The accuracy grows from p = 1 to 10 for the first 100
iterations.
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6 Conclusions

•N -Body methods address the main bottleneck of nonlinear embedding
methods: quadratic cost of the objective function and the gradient.

•Fast Multipole Methods are more beneficial than Barnes-Hut both the-
oretically and empirically (4− 7× speedup for million size dataset).

•Gradual increase of the accuracy parameter is advisable.

•MATLAB code: http://eecs.ucmerced.edu.


