Google Research

Meta-Learning Bidirectional Update Rules

Mark Sandler, Max Vladymyrov, Andrey Zhmoginov, Nolan Miller, Andrew Jackson, Tom Madams, Blaise Agüera y Arcas

Goal

Meta-learn synapse update rules with very mild assumptions on the inner-loop (no loss functions, no gradients) that learns faster than traditional methods.

Motivation

SGD optimization via Backpropagation:

- Uses predefined loss function computed at every iteration.
 The loss is minimized via gradient
- descent (steepest direction of the current loss). Optimization can use previous
- Optimization can use previous iterations (e.g. momentum), but (mostly) can't see forward.
 Optimization procedure is
- Optimization procedure independent from the dataset.

- Bidirectional Learning Update Rules (BLUR):
 Synapse updated rules are parametrized and meta-learned via a
 - low-dimensional genome matrix. No predefined per-iteration loss function, no explicit gradients.
- Keep bidirectionality of the updates:

 Input is passed at the forward pass.
 - Labels are passed at the backward pass.
- Metatrain to a given iteration (unroll).

SGD is a special case of two-state neurons

Backpropagation can be equivantly reformulated with generalized two-state neurons a_j^c , where j is a layer and $c\in\{0,1\}$ is a state.

Bidirectional Learning Update Rules (BLUR)

	Backpropagation/SGD	BLUR (Multi-state)
Forward	$a_j^c \leftarrow \phi^c \Big(\sum_{i \in I(j), d} w_{ij} a_i^d u^{cd} \Big)$	$a_j^c \leftarrow \sigmaig(fa_j^c + \eta \sum_{i,d} w_{ij}^c u^{cd} a_i^dig)$
Backward	$a_i^{(2)} \leftarrow a_i^{(2)} \sum_{j \in J(i), d} w_{ij} a_j^d \mu^d$	$a_i^c \leftarrow \sigmaig(fa_i^c + \eta \sum_{j,d} w_{ji}^c \mu^{cd} a_j^dig)$
Weight update	$w_{ij} \leftarrow w_{ij} - ilde\eta \sum_{c,d} a^c_j ilde\mu^c a^d_i ilde u^d$	$w_{ij}^c \leftarrow \tilde{f} w_{ij}^c + \tilde{\eta} \sum_{e,d} a_i^e \tilde{\nu}^{ec} \cdot \tilde{\mu}^{cd} a_j^d$
States	- Two states neuron: $c,d\in\{1,2\}$ - Single state synapse.	 k neuron states. k synapse states (possibly asymmetric).
Feedback	- Derivative of the loss function.	- Passed directly to the final layer.
Forward pass	- Both updates computes from the first state. - Different activation functions for each state.	- All states are updated via transform matrix ν^{cd} - Same activation functions for each state. - Forget f and update η are learned parameters.
Backward pass	- Second state update only multiplicatively. - Linear activation.	- All states are updated via transform matrix μ^{cd} - Same activation for each state. - Forget f and update η are learned parameters.
Synapse update	 Second state of postsynaptic and first state of presynaptic. Learning rate is a user parameter. 	- All states from presynaptic and postsynaptic are mixe together via transform matrices $\widetilde{\nu}^{cd}$ and $\widetilde{\mu}^{cd}$. - Forget \widetilde{f} and update $\widetilde{\eta}$ are learned parameters.

Generalization of a genome

• Trained on 10x10 MNIST using 2-layer 4-state architecture. Validated on 28x28 digits.

Train networks with 1,2,4 layers to 10 untrolls and evaluated to 1,2,4,5,10 layers.

Meta-learning the genome

- 1. Start with a random genome
- 2. Repeat until meta-convergence:
 - a. Apply forward/backward/synapse update for ${\tt t}$ unroll steps
 - b. Measure the quality^(*) of the learned synapses
 - c. Meta-step: Update genome using ES or SGD

 $(\ensuremath{^*})$ quality can be any fitness functions, e.g. cross-entropy loss or validation accuracy.

SGD w/ different parameters vs BLUR

Genome learns faster than SGD with any learning rate/momentum.

Role of normalization

Forward and backward (!!) activation normalization is important for good generalization.

